wCQ: A Fast Wait-Free
Queue with Bounded
Memory Usage

Ruslan Nikolaev *, , Penn State University, USA

Binoy Ravindran, , Virginia Tech, USA

* Most of the work was done while the
author was at Virginia Tech

mailto:rnikola@psu.edu
mailto:binoy@vt.edu

Concurrent Data Structures

» Many-core systems require efficient access to data
— Concurrent data structures

> Multiple threads need to safely manipulate data structures (similar to

sequential data structures)
Thread Thread Thread

- "nothing bad will happen” A B c

Concurrent Data Structures

» Many-core systems require efficient access to data
— Concurrent data structures

» Multiple threads need to safely manipulate data structures (similar to

sequential data structures)

" . . " Thread Thread Thread
- "nothing bad will happen A B C

» Concurrency also adds a liveness property, which stipulates how
threads will be able to make progress

- "something good will happen eventually"

Thread Thread Thread
A B C

Wait-Freedom

» Non-blocking data structures

- Lock-free data structures require that at least one thread completes an
operation after a finite number of steps

- Wait-free data structures require that all threads complete any
operation after a finite number of steps

> Wait-free algorithms have increasingly gained more attention due to their
strongest non-blocking progress property

— But building wait-free queues is challenging

F&A: Hardware-based vs. CAS-emulated

» F&A (fetch-and-add) generally scales better than CAS (compare-and-set)
— Used by LCRQ [PPoPP’13], YMC [PPoPP’16], SCQ [DISC’19]

80
70
60
50

--FAA —o-CAS
;13 Xeon E7-8880 v3 2.3 GHz,
——— 4x18 cores

20
10

0
1 2 4 8 18 36 72 144

Threads

nanoseconds

Existing Approaches

» There are quite a few concurrent queues but there is no truly wait-free
queue which has performance on par with state-of-the-art lock-free queues

» Kogan-Petrank’s queue [PPoPP’11]
- Wait-free but slow
» CRTurn queue [PPoPP’17]

- Wait-free but is still slow
» Yang and Mellor-Crummey (YMC) queue [PPoPP’16]
- Fast but has flawed memory reclamation => not truly wait-free

- Uses ring buffers

Existing Approaches

» LCRQ [PPoPP’13]
- Uses ring buffers
- Fast and memory reclamation is correct but is only lock-free

- Always needs a slower (M&S) queue as an outer layer for lock-free
progress

» Scalable Circular Queue (SCQ) [DISC’19]
- Uses ring buffers
- Fast but is only lock-free

- Unlike LCRQ, does not need M&S queue for lock-free progress

> We present a wait-free circular queue (WCQ) which extends SCQ

Background: Infinite Array Queue
(livelock-prone)

void *dequeue() {
while (true) {
H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p # 1) return p;
if (Load(Head) < H + 1)
return nullptr;

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {
T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = 1)
break;

Background: Infinite Array Queue
(livelock-prone)

void *dequeue() {
while (true) {
H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p # 1) return p;
if (Load(Head) < H + 1)
return nullptr;

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {
T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = 1)
break;

Background: Infinite Array Queue
(livelock-prone)

void *dequeue() {
while (true) {
H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p # 1) return p;
if (Load(Head) < H + 1)
return nullptr;

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {
T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = 1)
break;

Background: SCQ’s Data Structure

V j=k+1,n—1 Head: O+i*n
n-1] Y 0 0
-y Y _ (0] .
1 » Two queues
2 _

aq and fq store indices

- Adata array contains

12

_ - fixed-size elements (or
fq: queue of freed arbitrary pointers)

elements (size: n)

20 - Uses only a single word

and avoids ABA
[K] 21 : il :
D Ee(':#rr%nt'gl' o » Crucial for wCQ!
. : ing initializ

Tail: k+1+*n \ v /by some thread

aq: queue of allocated

: (neither queue)
elements (size: n) n elements

Challenges

» Memory reclamation is tough when also considering wait-free progress
properties

- Not impossible but is error-prone
- Better to avoid altogether if possible

» Kogan-Petrank’s fast-path-slow-path method [PPoPP’12] does not support
specialized instructions such as fetch-and-add (F&A)

- F&A scales better and is the key instruction in SCQ
* Unclear how to leverage F&A with Kogan-Petrank’s method
- Uses dynamic memory allocation

* Implicitly assumes memory reclamation

wCQ’s Key Idea

» Key insight: avoid memory reclamation altogether

- Allocate fixed-size ring buffers and one descriptor per each thread
during initialization

wCQ’s Key ldea

» Key insight: avoid memory reclamation altogether

- Allocate fixed-size ring buffers and one descriptor per each thread
during initialization

» We design our own fast-path-slow-path method for SCQ that also supports F&A
- The fast path is almost identical to SCQ
- No memory reclamation is needed: all descriptors are static

- The slow path is used as a fall-back if no progress is being made after
several iterations

wCQ’s Key ldea

» Key Requirement: a double-width CAS, available on x86-64 and AArch64

Also possible to implement via single-width LL/SC on certain
architectures such as PowerPC and MIPS

Keeps an additional cycle for entries to avoid inconsistencies when
multiple threads modify the same element (slow path)

Also used with head and tail to keep a special helpee request (slow path)

But fast paths still use a regular CAS and hardware F&A for head and
tail!

wCQ’s Key ldea

» Key Requirement: a double-width CAS, available on x86-64 and AArch64

— Also possible to implement via single-width LL/SC on certain
architectures such as PowerPC and MIPS

- Keeps an additional cycle for entries to avoid inconsistencies when
multiple threads modify the same element (slow path)

— Also used with head and tail to keep a special helpee request (slow path)

- But fast paths still use a regular CAS and hardware F&A for head and
tail!

» Slow path does not take advantage of F&A anymore (for the most part)

- It must be compatible with F&A in the fast path though

wCQ’s Slow Path

» In the slow path, F&A is substituted with a more complex operation
slow_F&A, which allows coordinated increments of head/tail counters across

multiple helpers and the helpee
» All active threads eventually converge to help a thread that is stuck

— One of these threads will eventually succeed due to the underlying SCQ’s
lock-free guarantees (i.e., at least one thread always succeeds)

- All helpers must repeat exactly the same procedure as the helpee

Evaluation

» wCQ is the fastest wait-free queue

- wCQ generally outperforms YMC, for which memory usage can be
unbounded

- LCRQ can yield better performance but lacks wait-freedom

» wCQ’s performance is close to the SCQ algorithm

Evaluation: 50% Enqueue, 50% Dequeue

120 - FAA ——wCQ YMC (bug) =& CCQueue
—-—SCQ CRTurn == MSQueue ——LCRQ 90 - F&A
100 30 ——wCQ
YMC (bug)
80 70 —+— CCQueue
60 —-—SCQ

(o))
o

CRTurn
== MSQueue

o
]
n
=~
0
Q.
o
=

N
o
Mops/sec
D
o

20 b EEMN
; \ ~ 10 = —
1 2 4 8 18 36 72 144 0
1 2 4 8 16 32 64
Threads
Threads
Xeon E7-8880 v3 2.3 GHz, POWERS 3.0 GHz,

4x18 cores 8x8 cores

(&)
cu
o
[%2]
o
o
=

Evaluation: Pairwise Enqueue-Dequeue

- FAA ——wCQ YMC (bug) =+ CCQueue
—=-—SCQ CRTurn == MSQueue —+—LCRQ

120

100

80

60

40

20

1 2 4 8 18 36 72 144
Threads

Xeon E7-8880 v3 2.3 GHz,
4x18 cores

Mops/sec

80
- FAA
70 ——wCQ
60 YMC (bug)
50 -4— CCQueue
—=— SCQ
40 CRTurn

30
20
10

== MSQueue

1 2 4 8 16 32
Threads

POWERS 3.0 GHz,
8x8 cores

Mops/sec

Evaluation: Empty Dequeue

8000

7000 -- FAA ——wCQ

6000 YMC (bug) =4 CCQueue
=— SCQ CRTurn

5000 94 MSQueue -+ LCRQ

4000

3000

2000

1000

1 2 4 8 18 36 72
Threads

144

Xeon E7-8880 v3 2.3 GHz,
4x18 cores

300
250
200
8 e S~
< 150 ‘ o e
g == FAA ——wCQ
= 100 YMC (bug) =&= CCQueue
=—SCQ CRTurn
50 =+ MSQueue
0 - ‘h‘—‘- ——— =
1 2 4 8 16 32 64
Threads
POWERS 3.0 GHz,

8x8 cores

Remarks

» wCQ implements a bounded queue (ring buffer)
» LCRQ and SCQ link ring buffers together to create an unbounded queue

- The outer layer does not need to be scalable
* LCRQ and SCQ use (lock-free) M&S queue
» The same approach can be taken with wCQ

- Use a slower wait-free queue as an outer layer (e.g., CRTurn)

Source Code

» Code is open-source and available at:
>

https://github.com/rusnikola/wfqueue

Source Code

» Code is open-source and available at:
>

THANK YOU!

https://github.com/rusnikola/wfqueue

	Brief Announcement: Crystalline: Fast and Memory Efficient Wait
	Slide 2
	Slide 3
	Memory Reclamation
	Slide 5
	Slide 6
	Memory Reclamation (2)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Crystalline-W
	Slide 20
	Slide 21
	Slide 22
	More Details
	Slide 24

