
wCQ: A Fast Wait-Free 
Queue with Bounded 

Memory Usage
Ruslan Nikolaev *, rnikola@psu.edu, Penn State University, USA

Binoy Ravindran, binoy@vt.edu, Virginia Tech, USA

* Most of the work was done while the 
author was at Virginia Tech

mailto:rnikola@psu.edu
mailto:binoy@vt.edu


Concurrent Data Structures

 Many-core systems require efficient access to data

– Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to 
sequential data structures)

– "nothing bad will happen"
Thread

A
Thread 

B
Thread 

C



Concurrent Data Structures

 Many-core systems require efficient access to data

– Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to 
sequential data structures)

– "nothing bad will happen"
 Concurrency also adds a liveness property, which stipulates how 

threads will be able to make progress
– "something good will happen eventually"

Thread
A

Thread 
B

Thread 
C

Thread
A

Thread 
B

Thread 
C



Wait-Freedom

 Non-blocking data structures

– Lock-free data structures require that at least one thread completes an 
operation after a finite number of steps

– Wait-free data structures require that all threads complete any 
operation after a finite number of steps

 Wait-free algorithms have increasingly gained more attention due to their 
strongest non-blocking progress property

– But building wait-free queues is challenging



F&A: Hardware-based vs. CAS-emulated

 F&A (fetch-and-add) generally scales better than CAS (compare-and-set)

– Used by LCRQ [PPoPP’13], YMC [PPoPP’16], SCQ [DISC’19]

1 2 4 8 18 36 72 144
0

10

20

30

40

50

60

70

80

FAA CAS

Threads

na
no

se
co

nd
s

Xeon E7-8880 v3 2.3 GHz, 
4x18 cores



Existing Approaches

 There are quite a few concurrent queues but there is no truly wait-free 
queue which has performance on par with state-of-the-art lock-free queues

 Kogan-Petrank’s queue [PPoPP’11]

– Wait-free but slow

 CRTurn queue [PPoPP’17]

– Wait-free but is still slow

 Yang and Mellor-Crummey (YMC) queue [PPoPP’16]

– Fast but has flawed memory reclamation => not truly wait-free

– Uses ring buffers



Existing Approaches

 LCRQ [PPoPP’13]

– Uses ring buffers

– Fast and memory reclamation is correct but is only lock-free

– Always needs a slower (M&S) queue as an outer layer for lock-free 
progress

 Scalable Circular Queue (SCQ) [DISC’19]

– Uses ring buffers

– Fast but is only lock-free

– Unlike LCRQ, does not need M&S queue for lock-free progress

 We present a wait-free circular queue (wCQ) which extends SCQ



Background: Infinite Array Queue 
(livelock-prone)

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {

T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = )⊥

break;
}

}

void *dequeue() {
while (true) {

H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p ≠ ) ⊥ return p;
if (Load(Head) ≤ H + 1)

return nullptr;
}

}



Background: Infinite Array Queue 
(livelock-prone)

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {

T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = )⊥

break;
}

}

void *dequeue() {
while (true) {

H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p ≠ ) ⊥ return p;
if (Load(Head) ≤ H + 1)

return nullptr;
}

}



Background: Infinite Array Queue 
(livelock-prone)

int Tail = 0, Head = 0;

void enqueue(void *p) {
while (true) {

T = F&A(&Tail, 1);
if (SWAP(&Array[T], p) = )⊥

break;
}

}

void *dequeue() {
while (true) {

H = F&A(&Head, 1);
p = SWAP(&Array[H], T);
if (p ≠ ) ⊥ return p;
if (Load(Head) ≤ H + 1)

return nullptr;
}

}



Background: SCQ’s Data Structure

0+i*n,
1

1
2

12

20

Hea d:  0 + i*n

Ta il: k + 1+ i* n

1+i*n,
12

[0]

[1]

k+i*n,
20
[k]

j +
 ( i -

 1 )
 * n

   

[k+1]

[n-1]

...

...

...

0

aq: queue of allocated 
elements (size: n)

fq: queue of freed 
elements (size: n)

is currently 
being initialized 
by some thread 
(neither queue)

n elements

...
21

 Two queues

– aq and fq store indices

– A data array contains 
fixed-size elements (or 
arbitrary pointers)

– Uses only a single word 
and avoids ABA

● Crucial for wCQ!



Challenges

 Memory reclamation is tough when also considering wait-free progress 
properties

– Not impossible but is error-prone

– Better to avoid altogether if possible

 Kogan-Petrank’s fast-path-slow-path method [PPoPP’12] does not support 
specialized instructions such as fetch-and-add (F&A)

– F&A scales better and is the key instruction in SCQ
● Unclear how to leverage F&A with Kogan-Petrank’s method

– Uses dynamic memory allocation
● Implicitly assumes memory reclamation



wCQ’s Key Idea

 Key insight: avoid memory reclamation altogether

– Allocate fixed-size ring buffers and one descriptor per each thread 
during initialization



wCQ’s Key Idea

 Key insight: avoid memory reclamation altogether

– Allocate fixed-size ring buffers and one descriptor per each thread 
during initialization

 We design our own fast-path-slow-path method for SCQ that also supports F&A

– The fast path is almost identical to SCQ

– No memory reclamation is needed: all descriptors are static

– The slow path is used as a fall-back if no progress is being made after 
several iterations



wCQ’s Key Idea

 Key Requirement: a double-width CAS, available on x86-64 and AArch64

– Also possible to implement via single-width LL/SC on certain 
architectures such as PowerPC and MIPS

– Keeps an additional cycle for entries to avoid inconsistencies when 
multiple threads modify the same element (slow path)

– Also used with head and tail to keep a special helpee request (slow path)

– But fast paths still use a regular CAS and hardware F&A for head and 
tail!



wCQ’s Key Idea

 Key Requirement: a double-width CAS, available on x86-64 and AArch64

– Also possible to implement via single-width LL/SC on certain 
architectures such as PowerPC and MIPS

– Keeps an additional cycle for entries to avoid inconsistencies when 
multiple threads modify the same element (slow path)

– Also used with head and tail to keep a special helpee request (slow path)

– But fast paths still use a regular CAS and hardware F&A for head and 
tail!  

 Slow path does not take advantage of F&A anymore (for the most part)

– It must be compatible with F&A in the fast path though



wCQ’s Slow Path

 In the slow path, F&A is substituted with a more complex operation 
slow_F&A, which allows coordinated increments of head/tail counters across 
multiple helpers and the helpee 

 All active threads eventually converge to help a thread that is stuck

– One of these threads will eventually succeed due to the underlying SCQ’s 
lock-free guarantees (i.e., at least one thread always succeeds)

– All helpers must repeat exactly the same procedure as the helpee



Evaluation

 wCQ is the fastest wait-free queue

– wCQ generally outperforms YMC, for which memory usage can be 
unbounded

– LCRQ can yield better performance but lacks wait-freedom

 wCQ’s performance is close to the SCQ algorithm 



Evaluation: 50% Enqueue, 50% Dequeue

1 2 4 8 18 36 72 144
0

20

40

60

80

100

120 FAA wCQ YMC (bug) CCQueue
SCQ CRTurn MSQueue LCRQ

Threads

M
op

s/
se

c

1 2 4 8 16 32 64
0

10
20
30
40
50
60
70
80
90 F&A

wCQ
YMC (bug)
CCQueue
SCQ
CRTurn
MSQueue

Threads

M
op

s/
se

c

Xeon E7-8880 v3 2.3 GHz, 
4x18 cores

POWER8 3.0 GHz, 
8x8 cores



Evaluation: Pairwise Enqueue-Dequeue

1 2 4 8 18 36 72 144
0

20

40

60

80

100

120 FAA wCQ YMC (bug) CCQueue
SCQ CRTurn MSQueue LCRQ

Threads

M
op

s/
se

c

1 2 4 8 16 32 64
0

10

20

30

40

50

60

70

80
FAA
wCQ
YMC (bug)
CCQueue
SCQ
CRTurn
MSQueue

Threads

M
op

s/
se

c
Xeon E7-8880 v3 2.3 GHz, 
4x18 cores

POWER8 3.0 GHz, 
8x8 cores



Evaluation: Empty Dequeue

Xeon E7-8880 v3 2.3 GHz, 
4x18 cores

POWER8 3.0 GHz, 
8x8 cores

1 2 4 8 18 36 72 144
0

1000

2000

3000

4000

5000

6000

7000

8000
FAA wCQ
YMC (bug) CCQueue
SCQ CRTurn
MSQueue LCRQ

Threads

M
op

s/
se

c

1 2 4 8 16 32 64
0

50

100

150

200

250

300

FAA wCQ
YMC (bug) CCQueue
SCQ CRTurn
MSQueue

Threads

M
op

s/
se

c



Remarks

 wCQ implements a bounded queue (ring buffer)

 LCRQ and SCQ link ring buffers together to create an unbounded queue

– The outer layer does not need to be scalable
● LCRQ and SCQ use (lock-free) M&S queue

 The same approach can be taken with wCQ

– Use a slower wait-free queue as an outer layer (e.g., CRTurn)



Source Code

 Code is open-source and available at:
 https://github.com/rusnikola/wfqueue

https://github.com/rusnikola/wfqueue


Source Code

 Code is open-source and available at:
 https://github.com/rusnikola/wfqueue

THANK YOU!

https://github.com/rusnikola/wfqueue

	Brief Announcement: Crystalline: Fast and Memory Efficient Wait
	Slide 2
	Slide 3
	Memory Reclamation
	Slide 5
	Slide 6
	Memory Reclamation (2)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Crystalline-W
	Slide 20
	Slide 21
	Slide 22
	More Details
	Slide 24

