
Brief Announcement:
SCOT: Fix non-blocking data structures,

not memory reclamation

Md Amit Hasan Arovi, arovi@psu.edu, The Pennsylvania State University, USA

Ruslan Nikolaev, rnikola@psu.edu, The Pennsylvania State University, USA

mailto:arovi@psu.edu
mailto:rnikola@psu.edu

Non-Blocking Data Structures

• Allow multiple threads to operate without mutual exclusion
• Lock-free data structures: at least one thread always makes

progress
• Require safe memory reclamation (SMR) techniques

• Epoch-Based Reclamation (EBR) is easy-to-use but has unbounded
memory usage

• Hazard Pointers (HP) is more difficult to use but is robust

Limitations of Non-Blocking Data Structures

• Many robust memory reclamation schemes (e.g., HP) fail to
support optimistic traversals used in many lock-free algorithms:
• Harris’ linked list
• Natarajan-Mittal tree
• Many others (skip lists, hash tables, etc)

• Workarounds are sometimes available with performance costs
• Harris-Michael linked list
• No such modification for Natarajan-Mittal tree

B CA F

Thread 0: Delete(B) => Node B is marked for logical deletion

... Thread 0 is stalled

Problem

B CA F

Thread 1: Locate node F

Thread 1 (Search)

Problem

traversing the list

B CA F

Thread 2: Delete(C)

Thread 1 (Search)

Thread 2 (Delete)

Problem

B CA F

Thread 2: Node C is marked for logical deletion

Thread 1 (Search)

Thread 2 (Delete)

Problem

B CA F

Thread 2 unlinks the entire chain of nodes between Node A and Node F
(assuming all consecutive nodes in the chain are logically deleted)

Thread 1 (Search)

Thread 2 (Delete)

Unlinking

Problem

B CA F

Node C is Reclaimed by Thread 2 and returned to the OS

Thread 1 (Search)

Thread 2 (Delete)

Unlinking

Reclaim Node C

Problem

B CA F

Thread 1 fails when accessing Node C

Thread 1 (Search)

Thread 2 (Delete)

Unlinking

Reclaim Node C

SEGFAULT: Node C

Problem

traversing the list

Safe Concurrent Optimistic Traversals (SCOT)

• Instead of fixing the SMR → fix the data structure
• Resolves the robustness vs. applicability dilemma, ERA Theorem [PODC

’23]

• Redesign traversals to add local validation

N2 N3N1 N5

Initial State: List Contains Nodes N1-N6

N4 N6

SCOT: Harris’ Linked List

N2 N3N1 N5

Hp0: protects next
Hp1: protects curr
Hp2: protects prev (not available at the very beginning)

N4

Reserved
by [Hp1]

Reserved
by [Hp0]

N6

SCOT: Harris’ Linked List

N2 N3N1 N5

Moving hazard pointers when moving to the next iteration:
curr (N1) [Hp1] -> prev [Hp2]
next (N2) [Hp0] -> curr [Hp1]
(new) next (N3) [Hp0]

N4

Reserved
by [Hp2]

Reserved
by [Hp1]

Reserved
by [Hp0]

N6

SCOT: Harris’ Linked List

N2 N3N1 N5

Node N2-N4 are logically deleted

N4 N6

SCOT: Harris’ Linked List

N2 N3N1 N5

Need to be careful while traversing the dangerous zone

N4

Dangerous zone

N6

SCOT: Harris’ Linked List

N2 N3N1 N5

N1 and N2 protected by hazard pointers’ reservations

N4

Dangerous zone

Reserved
by [Hp1]

Reserved
by [Hp0]

N6

SCOT: Harris’ Linked List

N2 N3N1 N5N4

Dangerous zone

Reserved
by [Hp2]

Reserved
by [Hp1]
[Hp3]

Reserved
by [Hp0]

Next destination N3
N1 is the last safe node and protected by Hp2
N2 is the first unsafe node protected by Hp3

Hp3 is an extra hazard pointer which protects the 1st unsafe node
Hp2 protects the last safe node

N6

SCOT: Harris’ Linked List

N2 N3N1 N5N4

Dangerous zone

Reserved
by [Hp2]

Reserved
by [Hp3]

Reserved
by [Hp0]

Validate (*prev = prev_next) after reserving N3 (Hp0)

prev

Validate
prev_next

N6

SCOT: Harris’ Linked List

N2 N3N1 N5N4

Dangerous zone

Reserved
by [Hp2]

Reserved
by [Hp3]

Reserved
by [Hp1]

Validate (*prev = prev_next) after reserving N4 (Hp0)

prev

Validate

Reserved
by [Hp0]

prev_next

N6

SCOT: Harris’ Linked List

N2 N3N1 N5N4

Dangerous zone

Reserved
by [Hp2]

Reserved
by [Hp3]

Reserved
by [Hp1]

What if (*prev = prev_next) validation fails due to a new node being inserted or the
chain of logically deleted nodes being already eliminated by a concurrent thread?

We start from the last safe node (N1)

prev

Validate

Reserved
by [Hp0]

prev_next

SCOT: Recovery

N6

N2 N3N1 N5N4

Dangerous zone

Reserved
by [Hp2]

Reserved
by [Hp3]

Reserved
by [Hp1]

What if the last safe node (N1) is also logically deleted?

We start from the beginning

Note: There are still practical fall-backs (for IBR, Hyaline-1S) in the paper

prev

Validate

Reserved
by [Hp0]

prev_next

SCOT: Recovery

N6

F

A

Leaf nodes contain actual keys

Keys in Internal nodes are used for traversal

B

C

D

G

H

K E

ancestor

successor

parent

leaf

R rootSCOT: Natarajan-Mittal Tree

F

A

B

C

D

G

H

K E

ancestor

successor

parent

leaf
When leaf nodes G, H, E are deleted (flagged, F=1)

R rootSCOT: Natarajan-Mittal Tree

F

A

B

C

D

G

H

K E

ancestor

successor

parent

leaf

When leaf nodes G, H, E are deleted (flagged, F=1)

siblings (B-C, C-D, D-K) are getting tagged (T=1)

R root
SCOT: Natarajan-Mittal Tree

F

A

B

C

D

G

H

K E

ancestor

successor

parent

leaf

A crucial observation: a chain of consecutively tagged edges
can be eliminated with one CAS operation by updating
ancestor’s link from successor to the remaining leaf node

successor node is the last untagged node

F

A ancestor

K leaf

Ancestor’s right link is changed
from successor (B) to the remaining
leaf node (K)

R rootSCOT: Natarajan-Mittal Tree
R root

• We allocate 5 hazard pointers to protect nodes in the underlying
search procedure: current, leaf, parent, successor, and ancestor. The
current node points to the lowest node that is currently considered

• After each HP reservation of the current node, if the corresponding
node is flagged or tagged, we need verify that ancestor still points to
successor

• If ancestor points to some other node or successor becomes tagged,
we need to restart from the very beginning

SCOT: Natarajan-Mittal Tree

Evaluation Setup

• AMD EPYC 9754, 128 cores, 256 hardware threads, 384 GiB of RAM
• SMR Schemes

• No-Reclamation (NR) baseline which leaks memory
• Epoch-Based Reclamation (EBR)
• Hazard Pointers (HP): TPDS ’04
• Hazard Eras (HE): SPAA ’17
• Interval-Based Reclamation (IBR): PPoPP ’18
• Hyaline-1S (HLN): PODC ’19, PLDI ’21

Evaluation: Harris vs. Harris-Michael list
Key Range = 512

Evaluation: Natarajan-Mittal tree
Key Range = 100,000

Code Availability

• Code is open-source and available at:

https://github.com/rusnikola/scot

https://github.com/rusnikola/scot

Code Availability

• Code is open-source and available at:

https://github.com/rusnikola/scot

Thank You! Questions?

https://github.com/rusnikola/scot

	Slide 1: Brief Announcement: SCOT: Fix non-blocking data structures, not memory reclamation
	Slide 2: Non-Blocking Data Structures
	Slide 3: Limitations of Non-Blocking Data Structures
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Safe Concurrent Optimistic Traversals (SCOT)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Evaluation Setup
	Slide 29: Evaluation: Harris vs. Harris-Michael list
	Slide 30: Evaluation: Natarajan-Mittal tree
	Slide 31: Code Availability
	Slide 32: Code Availability

