
Brief Announcement: SCOT: Fix non-blocking data structures, not
memory reclamation

Md Amit Hasan Arovi
The Pennsylvania State University

University Park, PA, USA
arovi@psu.edu

Ruslan Nikolaev
The Pennsylvania State University

University Park, PA, USA
rnikola@psu.edu

Abstract
We present Safe Concurrent Optimistic Traversals (SCOT), to ad-
dress a well-known problem related to optimistic traversals with
both classical and more recent memory reclamation schemes, such
as Hazard Pointers (HP), Hazard Eras (HE), Interval-Based Reclama-
tion (IBR), and Hyaline. For these schemes, unlike for Epoch-Based
Reclamation (EBR), existing data structure implementations are
either buggy (e.g., Natarajan-Mittal tree) or come with performance
trade-offs (e.g., Harris-Michael modified list).

Unlike past approaches, our method keeps the memory reclama-
tion scheme intact but requires data structure adaptations. SCOT en-
ables the first correct implementations of Harris’ list and Natarajan-
Mittal tree with optimistic traversals for HP, HE, IBR, and Hyaline.
Our evaluation shows that our technique enables high throughput,
comparable to EBR, especially when used with IBR and Hyaline.

CCS Concepts
• Theory of computation→ Concurrent algorithms.

Keywords
hazard pointers, non-blocking, Harris list, Natarajan-Mittal tree

ACM Reference Format:
Md Amit Hasan Arovi and Ruslan Nikolaev. 2025. Brief Announcement:
SCOT: Fix non-blocking data structures, not memory reclamation. In 37th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’25),
July 28–August 1, 2025, Portland, OR, USA.ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3694906.3743348

1 Introduction
When using manual memory management in non-blocking data
structures, memory has to be safely reclaimed by freeing memory
only when all ongoing operations with stale pointers complete.
One fast and easy-to-use safe memory reclamation (SMR) scheme
is Epoch-Based Reclamation (EBR) [3]. Unfortunately, EBR has
a serious drawback that any stalled thread results in unbounded
memory usage, i.e., it lacks robustness.

A number of researchers proposed various robust SMR schemes
in C, C++, or Rust. However, it was proven [14] that they always

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’25, Portland, OR, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1258-6/25/07
https://doi.org/10.1145/3694906.3743348

make compromises, e.g., in terms of ease of integration or compati-
bility with data structures (wide applicability). Among well-known
robust schemes is Hazard Pointers (HP) [7]. Prior to this work,
data structures such as Harris’ linked list [4] with optimistic tra-
versals and Natarajan-Mittal binary search tree [9] were not known
to work1 with HP [1, 5]. Likewise, hash tables and skip lists [3]
had similar issues. A number of recent schemes, including Interval-
Based Reclamation (IBR) [17], Hyaline-1S [11], and Hazard Eras
(HE) [13] are often faster but have issues similar to those of HP.

HP++ [5], a recent SMR scheme, is slower thanHP and alsomakes
some compromises with respect to wide applicability. However,
HP++ still demonstrates support for the above two data structures.
We are inspired by HP++’s success with these data structures, which
is indicative that many existing data structures can still be
implemented, with an additional effort, despite prior beliefs
regarding limited applicability of the SMR schemes in this category.

This paper departs from the typical strategy of designing a “silver-
bullet” SMR approach. Instead, we focus on fixing problematic data
structures using existing SMR techniques. In Section 4, we evaluate
data structures with optimistic traversals using HP, HE, IBR, and
Hyaline-1S schemes. We also compare results to EBR and show that
performance benefits can be preserved in the same manner.

2 Background
Harris’ List. In the algorithm, a thread that removes a node first
marks it as “logically” deleted by updating its next pointer. Subse-
quently, the node is “physically” unlinked from the list. Harris’ list
supports optimistic traversals, i.e., the search operation bypasses
logically deleted nodes without their immediate physical removal.

This approach presents fundamental challenges for HP, as we
show in Figure 1. Suppose Thread 3 (not shown) previously marked
N2 for deletion but has not yet unlinked it. Then, Thread 2 marks
N3 for deletion and unlinks the entire chain of nodes between N1
and N4 (assuming all consecutive nodes in the chain are logically
deleted). Meanwhile, Thread 1 is traversing the list; it reaches N2
before Thread 2 physically removes the chain. Although N2 is now
retired by Thread 2, it still remains in the HP limbo list. This is
because Thread 1 has made a reservation prior to N2’s physical
deletion. N3 is also retired by Thread 2, but because Thread 1 never
reserves N3, it is not guaranteed to stay in the HP limbo list, i.e.,
N3 is returned to the OS. Thus, Thread 1 fails when accessing N3.

To address this problem, Michael’s approach [6] ensures that
whenever a thread encounters a node marked as logically deleted

1Despite presenting Natarajan-Mittal tree results in [11, 17] for HP and other SMR
schemes, it was later argued [1] that such implementations are buggy and leak memory.
Moreover, [1] pointed out two bugs, and only one bug was resolved in [1]. Prior to
our work, the second bug related to optimistic traversals remained unresolved.

https://orcid.org/0009-0009-4341-1954
https://orcid.org/0000-0002-1699-0593
https://doi.org/10.1145/3694906.3743348
https://doi.org/10.1145/3694906.3743348

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Md Amit Hasan Arovi and Ruslan Nikolaev

Thread 1 (Search)

Thread 2 (Delete)

N1 N2 N3
Unlinking

SEGFAULT : N3

Reclaim N3

N4

Figure 1: Unsafe HP traversals: accessing 1st logically deleted
node (N2) is safe but subsequent nodesmay cause SEGFAULT.

during traversal, it immediately attempts to physically remove the
node from the list. Unfortunately, Michael’s approach increases the
number of CAS operations and may lead to a higher contention
among threads. It also makes read-only traversals impossible.

Why doesMichael’s approachwork? Recall that accessing N2
is still safe because its HP reservation is made prior to N2’s physical
deletion. (To reserve successfully, HP confirms that the pointer from
N1 to N2 remains intact.) Once N2 is physically deleted, it is retired
and ends up in the HP limbo list. If we now attempt to reserve N3,
HP falsely succeeds as the pointer fromN2 to N3 remains intact unlike
the pointer from N1 to N2. Thus, Michael’s approach ensures that
pointers always change during physical removal, which happens
automatically when we remove one node at a time.2

Natarajan-Mittal Tree. In the tree, every node keeps left and right
pointers. The actual keys and values are stored in leaf nodes, while
internal nodes are simply guiding in which direction (left or right)
the underlying search operation has to descend to the next level. A
concept similar to logical deletion also exists in this tree. There are
two types of marking: “flagging” when marking the leaf node for
its logical deletion followed by “tagging” of its sibling node.

When performing the underlying search operation, we keep the
successor node, which is the last untagged node, as well as its
preceding node – ancestor. We also keep the immediate parent
of the leaf node. The algorithm makes a very crucial observation:
a chain of consecutively tagged edges can be eliminated with one
CAS operation by updating ancestor’s link from successor to the
remaining leaf node. This idea is very similar to that of removing
a chain of logically deleted nodes in Harris’ linked list.

3 Algorithm Description
The crux of the problem with the HP implementation is its inability
to properly track physically deleted nodes. In Figure 1, N2 is still
safe to access because it is not physically deleted, i.e., N1 still points
to N2. Moreover, according to Harris’ list, we always make sure
that the node to the left is not logically deleted and thus never
unlink nodes in the middle of the chain, i.e., we can delete just
N2, or both N2-N3, but we never delete N3 while keeping N2 in the
list. In other words, we either remove the entire chain of logically
deleted nodes or a subchain with the truncated tail.

3.1 Solution
Combining the observations above, we make one crucial insight:
it is still safe to access N3 and the following nodes as long as at

2Another way to think about Michael’s approach is that if we remove nodes one by
one, N3 takes place of N2, i.e., right after N1. N3 will be the first logically deleted node
in the chain when making the HP reservation, which is still safe to access.

every step, i.e., after making an HP reservation for the next logically
deleted node, we verify that N1 still points to N2. Once we reach
N2, we declare it to be a “dangerous zone”. Until we reach the
end of the chain of consecutive logically deleted nodes, we are
going to stay in the dangerous zone and perform additional checks.
More specifically, after retrieving N3’s pointer and creating its HP
reservation, we check that N1 still points to N2. We will continue
to perform these checks at every iteration until we reach the end of
the chain. If the check fails, we cannot proceed further and need to
restart the search operation from the very beginning. (See Figure 3.)

In Figure 2, we present our approach for Harris’ list. Compared
to Michael’s approach, we need an additional hazard pointer index
(Hp3) which protects the first unsafe, i.e., logically deleted, node.
This extra hazard pointer prevents the ABA problem, i.e., a case
when the unsafe node gets recycled while we are traversing the
list. By holding this extra hazard pointer, we can solely rely on
pointer comparison. In other words, Hp3 protects N2 from our
example above irrespective of where we currently are in the chain
of logically deleted nodes. Like in Michael’s approach, we need
Hp2, which protects the prev area. We note that in Harris’ list, it
will be the last safe, i.e., not logically deleted, node.

TheHP reclamation provides a special protect function to safely
retrieve an object and make the corresponding reservation. Addi-
tionally, we implement dup to duplicate the existing hazard pointer
when moving to the next iteration. It is crucial to duplicate hazard
pointers such that the old HP index has a lower numerical value
than the new HP index (e.g., Hp0 to Hp1). This allows to avoid a
small race window when iterating in the same (ascending) order of
indices in retire. (An alternative to dup would be index renaming
via an indirection array. From our empirical observations, we found
duplication to be generally cheaper.)

One tricky part is to avoid a premature duplication into Hp3,
whichwould induce amemory barrier not present inHarris-Michael
approach, potentially making the algorithmmore costly.We achieve
that by unrolling the loop in the original Harris’ algorithm and split-
ting it into two phases: (1) iteration through the safe zone and (2)
iteration through the dangerous zone. Phase 1 only duplicates (shifts)
prev and curr hazard pointers from curr and next, correspond-
ingly. This is analogous to Harris-Michael algorithm. Upon leaving
Phase 1, curr is duplicated (Hp3) in L52. After going to Phase 2,
we no longer duplicate curr into prev (Hp2), which gives us an
extra benefit compared to Harris-Michael approach as the number
of memory barriers through the dangerous zone is reduced.

Once we get to the dangerous zone of logically deleted nodes,
Figure 2 runs a check in L58 which will ensure that the reserva-
tion made in L57 is correct. Once the chain (or its subchain) gets
unlinked, L58 fails and we restart the operation from the very begin-
ning. We highlight in the green color all major changes related to
SCOT in HP. We use pink to highlight the dangerous zone traversal.

Recovery Optimization. For simplicity, we have stated that when
validation fails, we go back to the beginning of the list. While this is
acceptable, this validation check is not always critical: the last safe
node may simply point to another node now (e.g., when a new node
was inserted, or the chain of logically deleted nodes was already
eliminated by a concurrent thread). In such cases, we can simply
escape from the dangerous zone and continue traversal from the

Brief Announcement: SCOT: Fix non-blocking data structures, not memory reclamation SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

1 struct {
2 node_t * Next; // Next node
3 key_t Key; // Any key type
4 } node_t;
5 node_t * Head; // Head of the list
6

7 void Init()
8 Head = malloc(sizeof(node_t));
9 Head->Next = nullptr;

10 Head->Key =∞;

11 bool Insert(key_t key)
12 node_t **prev, *curr, *next, *new;
13 new = malloc(sizeof(node_t));
14 new->Key = key;
15 while true do
16 if (Do_Find(key, &prev, &curr,

&next, false))
17 free(new);
18 return false;

19 new->Next = curr;
20 if (CAS(prev, curr, new))

return true;

21 bool Delete(key_t key)
22 node_t **prev, *curr, *next;
23 while true do
24 if (!Do_Find(key, &prev, &curr,

&next, false)) return false ;
25 if (!CAS(&curr->Next, next,

getMarked(next))) continue;
26 if (CAS(prev, curr, next))

smr_retire(curr);
27 return true;

28 bool Search(key_t key)
29 node_t **prev, *curr, *next;
30 return Do_Find(key, &prev, &curr,

&next, true);

31

// Hazard Pointer Indices
32 const int Hp0 = 0; // Protects next
33 const int Hp1 = 1; // Protects curr
34 const int Hp2 = 2; // Safe node (prev)
35 const int Hp3 = 3; // 1st unsafe node

36 bool Do_Find(key_t key,
node_t ***p_prev, node_t **p_curr,
node_t **p_next, bool is_search)

37 node_t **prev = &Head, *curr, *next;
38 node_t *prev_next = nullptr;
39 curr = hp.protect(Head, Hp1);
40 next = hp.protect(curr->Next, Hp0);
41 while true do
42 do
43 if (curr && curr->Key ≥ key)

goto 60 ;
44 prev_next = nullptr;
45 prev = &curr->Next;
46 hp.dup(Hp1,Hp2); // Hp2=Hp1:curr
47 curr = getUnmarked(next);
48 if (curr == nullptr) goto 68 ;
49 hp.dup(Hp0,Hp1); // Hp1=Hp0:next
50 next = hp.protect(curr->Next, Hp0);
51 while !isMarked(next);

// Hp3=Hp1:curr, return a hazard ptr
52 prev_next = hp.dup(Hp1, Hp3);

// Check last safe node (N1) still
points to the first unsafe (N2) node

53 do
54 curr = getUnmarked(next);
55 if (curr == nullptr) goto 60 ;
56 hp.dup(Hp0,Hp1); // Hp1=Hp0:next
57 next = hp.protect(curr->Next, Hp0);
58 if (*prev != prev_next) goto 37;
59 while isMarked(next);

60 if (!is_search && prev_next != nullptr
&& prev_next != curr)

61 if (!CAS(&prev, prev_next, curr)
62 goto 37;

63 do // Retire unlinked chain of nodes
64 node_t *node =

getUnmarked(prev_next->Next);
65 smr_retire(prev_next);
66 prev_next = node;
67 while (prev_next != curr);

68 *p_curr = curr;
69 *p_prev = prev; *p_next = next;
70 return curr && (curr->Key == key);

Figure 2: SCOT for Harris’ list using HP-style reclamation.

new node. We must, however, ensure that the last safe node is still
not logically deleted. When it is deleted, the last safe node (prev)
is in a dangerous zone itself (though still safe to access due to prior
reservation). For different SMR schemes, we have different choices.

In HP and HE, reservations are precise: protect uses indices and
cancels previous reservations. As keeping a predecessor of prev
would induce extra hazard pointers and duplication (hence memory
barriers), it makes sense to simply go back to the beginning of the
list when prev gets logically deleted.

For IBR and Hyaline-1S, protect has a cumulative effect and
does not cancel previous reservations. For these schemes, we imple-
ment a small on-stack ring buffer of prev pointers, which allows
us to fall further back in the list when prev gets logically deleted.
Empirically, we found that a ring buffer of size 8 is more or less
optimal. Only when exhausting all 8 predecessors, do we go back
to the beginning of the list. (See Figure 4.)

3.2 SCOT for Natarajan-Mittal Tree
For the tree, we allocate 5 hazard pointers to protect nodes in the
underlying search procedure: current, leaf, parent, successor,

N1 N2 N3 N5
Reserved by
[Hp2]

prev_next

prev

Reserved by
[Hp3]

Validate (*prev = prev_next) after reserving N3 (Hp0)

Reserving ‘next’ in Lines 40, 50, and 57
[Hp0]

N4 N6 N7 N8
Dangerous zone Another dangerous zone NULL

Figure 3: SCOT for Harris’ list: validating *prev = prev_next
at every iteration while traversing the dangerous zone.

N1 N2 N3
prev[0]

prev_next

prev

Reserved

Validation fails: (prev[0] != prev_next) due to logical deletion of N1

N4
Dangerous zone

N’
prev[2]

prevN’’
prev[1]

prev

N1 N2 N3
prev_next’

Reserved

Validation succeeds: (prev[1] = prev_next’)

N4
Dangerous zone

N’N’’
prev[1]

prev

Local ring buffer of pointers: prev[0..2]

Figure 4: IBR and Hyaline-1S can go back from N1 to N”.

and ancestor. The current node points to the lowest node that is
currently considered.

To properly support optimistic traversals, after each HP reser-
vation of the current node, if the corresponding node is flagged
or tagged, we need verify that ancestor still points to successor. If
ancestor points to some other node or successor becomes tagged,
we need to restart from the very beginning.

This idea is largely similar to the above-mentioned Harris’ list
approach, except that no additional hazard pointer is required, as
we already need to protect both ancestor and successor nodes. Ad-
ditionally, we need to check both tagged and flagged conditions for
the current node, as (flagged) leaf nodes’ hazard pointer reserva-
tions need to be also verified.

Unlike Harris’ list, empirically, we found that recovery does not
help improve performance for various key ranges, primarily be-
cause of the hierarchical structure of the tree (e.g., when there is
a mismatch, likely, the tree has diverged substantially anyway).
If ancestor no longer points to the original successor, we simply
restart the search from the very beginning.

Due to complexity of the algorithm and very similar checks for
optimistic traversals, we omit pseudocode in this paper. In Section 4,
we evaluate Natarajan-Mittal Tree with SCOT.

3.3 SCOT for Hash Tables and Skip Lists
SCOT for these data structures is largely similar to Section 3.1. Hash
tables are based on linked lists directly. Fraser’s skip list [3] uses
the same idea of logically deleted nodes as Harris’ list.

3.4 Wait-Free Optimistic Traversals
With our approach, optimistic traversals may need to occasionally
restart the search operation from the beginning if, due to overlap-
ping modifications, the state of the data structure diverges signifi-
cantly and cannot be recovered locally. This guarantees lock-free
but not wait-free progress. This limitation is very similar to that
of HP++’s existing solution which also does not support wait-free
optimistic traversals due to potential restarts.

However, this restart is inherently unavoidable with data struc-
tures that use optimistic traversals: it is still needed for Insert

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Md Amit Hasan Arovi and Ruslan Nikolaev

and Delete, regardless of the search operation or the reclamation
scheme used. We note that we can still implement wait-free search
traversals by using Timnat-Petrank’s method [15, 16] which allows
restarts. This method can be applied to various data structures, in-
cluding linked lists. Timnat-Petrank’s original wait-free linked list,
implemented in HP, is similar to Harris-Michael list. With SCOT, it
can now use Harris’ optimistic traversals for faster performance.

4 Evaluation
Our benchmark reuses and substantially extends the test harness
from [13]. We evaluate Harris-Michael List (HMList), Harris’ List
(HList), and Natarajan-Mittal Tree (NMTree) with EBR, HP, HE,
IBR, and Hyaline-1S (HLN) by carefully considering all well-known
optimizations. We also implemented extra optimizations for HP,
HE, and IBR, which allow to greatly reduce overheads due to cache
misses by capturing local snapshots of shared data in retire [11]. We
did not implement HP++ [5] due to its substantial API differences
(i.e., lack of an easy integration). HP++ is already known to perform
mostly worse than HP for the same data structure [5], i.e., HP++
shows some performance benefits only when comparing different
data structures (Harris-Michael HP list vs. Harris’ HP++ list). We
also did not evaluate WFE [10] or Crystalline [12], but their trends
should be largely similar to those of HE andHyaline-1S, respectively.
Finally, we present the No Reclamation (NR) baseline, which simply
leaksmemory and demonstrates the “upper bound” for performance.
For NMTree, everyone uses SCOT except NR/EBR. These algorithms
were previously infeasible for HP/IBR/HE/Hyaline-1S or contained
serious bugs in the available code, as discussed in [1, 5].

We calibrated all memory reclamation schemes to provide the
highest possible throughput while also minimizing the number
of not-yet-reclaimed objects. We found that amortizing retire list
scans with frequency of 128 works well for EBR, HP, HE, IBR, and
Hyaline-1S. Additionally, for EBR, IBR, HE, and Hyaline-1S we
select the epoch increment frequency which corresponds to the
number of threads multiplied by 12.

We run our experiments on Ubuntu 22.04.5 LTS using an AMD
EPYC 9754 system with 128 physical cores (256 hardware threads
w/ hyperthreading enabled), 384 GiB of RAM, and a maximum
clock speed of 3.10 GHz. The benchmark is written in C++ and
compiled using Clang++ 14.0.0 with -O3 optimizations because
its compiled code tends to perform slightly better than the code
generated by Ubuntu’s (default) GCC 11.4.0. For memory allocation,
we use Microsoft’s mimalloc [8] since it scales much better in
multi-threaded code compared to glibc’s stock malloc.

We present complete results, including memory usage and re-
covery optimization impact (which improves performance by up to
25%), in [2] for various key ranges and workloads. In this section,
we focus on throughput for mixed reads and writes (50% read –
50% write) using optimized SCOT. Each benchmark begins with
prefilling the data structure with unique keys using 50% of the spec-
ified key range. We conduct 5 runs, each lasting 10 seconds, and
report the median. We evaluate up to 256 threads and also show
oversubscription (384 threads) when results differ from 256 threads.

In Figure 5, HList consistently outperforms HMList. Generally,
IBR and Hyaline-1S exhibit excellent performance on HList with
SCOT traversal, matching or approaching that of EBR. HE and HP

Figure 5: Linked List Throughput (Key Range = 512).

Figure 6: NM Tree Throughput (Key Range = 100,000).

also show the relative benefits of SCOT traversal on HList, though
their overall performance is somewhat lower compared to EBR,
IBR, and Hyaline-1S, as expected. When comparing with previously
reported HP++’s results, we observe that our approach with HP
consistently outperforms HP++.

Figure 6 highlights the scalability of the tree at higher key ranges,
where the NMTree achieves up to 240million operations per sec-
ond at 256 threads using the EBR scheme. Hyaline-1S also performs
competitively, reaching 210 million operations per second, mak-
ing it the closest in performance to EBR in this configuration. When
comparing our results with HP++’s reported results, we observe
that our implementation is roughly 4x faster. Moreover, for the key
range of 100,000, the reported HP++ vs. EBR gap was around 30%,
whereas our HP vs. EBR gap is less than 30% and our IBR/HE/HLN
vs. EBR gap is less than 10%.

5 Conclusion
We introduced safe concurrent optimistic traversals (SCOT), a tech-
nique which enables support for data structures that are incompat-
ible with HP, IBR, HE, Hyaline-1S, and similar SMRs that lack the
wide applicability support. Despite prior beliefs [5] of incompati-
bility of Natarajan-Mittal Tree and Harris’ List with HP, we have
demonstrated that not only they are feasible with HP, IBR, HE, and
Hyaline-1S, but they also can largely retain performance benefits
when comparing to equivalent data structures without optimistic
traversals. We hope that our work will help to spur further research
and reevaluate the existing challenges related to SMR because lack
of the wide applicability property can be addressed by other means.

We thank the anonymous reviewers for their invaluable feedback.
Complete details of the algorithm, analysis, and evaluation are
available in [2]. SCOT’s code and benchmark for all evaluated data
structures are available at https://github.com/rusnikola/scot.

https://github.com/rusnikola/scot

