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Lock-Free Data Structures

1. Allow multiple threads to operate without locks 

2. Ensure system-wide progress (at least one thread always makes 
progress)

3. Avoid deadlocks and improve scalability



Lock-Free Data Structures

1. Lock-Free data structures are more difficult to use

2. In particular: not easy to move objects from one data structure 
to another  
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1. Lock-Free data structures are more difficult to use

2. In particular: not easy to move objects from one data structure 
to another  

In this paper we address this problem
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Tasks Waiting for I/O

Example

struct task_struct { 
    int tid; 

         struct file *fds[N]; 
...........................

     …........................   
         struct task_struct *next; 
};
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Tasks Ready To be Executed

Tasks Waiting for I/O

struct task_struct { 
    int tid; 

         struct file *fds[N]; 
...........................

     …........................   
         struct task_struct *next; 
};Epoch-Based Reclamation (EBR)

Hazard Pointers (HP) [TPDS '04]

Example
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Tasks Ready To be Executed

Tasks Waiting for I/O

move()

1. Can work around this problem by allocating a new object and copying

2. Comes with copying overheads and sometimes infeasible (interrupts)

Example
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Treiber's Stack 

CAS: Compare-And-Swap (CAS) is an atomic instruction that compares a 
memory location’s current value to an expected value and updates it to a new 
value only if they match. It returns true if the update succeeds, or false otherwise.

Treiber's Stack

Top.CAS(A, B)

Thread 1 : POP (A)

Treiber’s Stack is a classic lock-free data structure that uses a singly-linked list and 
the compare-and-swap (CAS) primitive to push and pop elements from the top.
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Can we directly move objects from one 
stack to another one?

Treiber's Stack

Top.CAS(A, B)

Thread 1 : POP (A)

Treiber's Stack 
Treiber’s Stack is a classic lock-free data structure that uses a singly-linked list and 
the compare-and-swap (CAS) primitive to push and pop elements from the top.
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Thread 1

Thread 1 begins its operation.......

Treiber's Stack: The ABA Problem
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Top
Thread 1

Thread 1 calls POP

Treiber's Stack: The ABA Problem 
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Thread 1

Thread 1 gets preempted before doing Top.CAS (A, B)

Treiber's Stack: The ABA Problem 
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Thread 2

Thread 2 steps in..........

Treiber's Stack: The ABA Problem 
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Thread 2

Thread 2 removes A (POP) and changes the top to B (CAS) 

Treiber's Stack: The ABA Problem 
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Top
Thread 2

Thread 2 pushes C (new Top)

Treiber's Stack: The ABA Problem 
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Top
Thread 2

A

Thread 2 pushes A (reusing the same memory address) and do CAS (Top, A)

Treiber's Stack: The ABA Problem 
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Thread 1

A

Thread 1 resumes and completes its Top.CAS (A, B) leaving C hanging

False Positive!

Treiber's Stack: The ABA Problem 
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tag

NULL
Next

ptr

Wide CAS (W-CAS) & CMPXCHG16B: W-CAS (Wide Compare-And-Swap) 
refers to atomic operations on larger-than-pointer-sized data (e.g., 128 bits) 
and essential for lock-free data structures that use tagged pointers (e.g., 
pointer + version/tag). On x86-64, the instruction CMPXCHG16B performs an 
atomic 16-byte (128-bit) compare-and-swap.

Top

Treiber's Stack: Solution for ABA
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More complex Data Structures: Linked List

A

Harris' Lock-Free Linked List [DISC '01]

Nodes in a linked list can be removed  arbitrarily



B CA

B is marked for deletion (logical)

More complex Data Structures: Linked List



CA

B is physically unlinked from the list

More complex Data Structures: Linked List



What needs to be solved for RRR Linked List?

• ABA safety
• Strict ownership
• Safe traversal
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ptr

tag
ptr NULL

Initial A.tag
             A.ptr
             B.tag
             A.tag
                 .
                 .
Initial B.tag
              B.ptr

             .
                  .

Problem 1 Solution (Linked List)
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Problem 1 Solution (Linked List)

A tag
ptr

tag
ptr NULL

Initial A.tag
             A.ptr
             B.tag
             A.tag
                 .
                 .
Initial B.tag
              B.ptr

             .
                  .



Strong Ownership (RRR-SMR Model)

• Logical deletion thread takes ownership of the node

• The thread is responsible for both:
• Making sure that the node is physically removed
• Reclaiming memory

B CA

Problem 2 Solution (Linked List)
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Strong Ownership (RRR-SMR Model)

• Logical deletion thread takes ownership of the 
node

• The thread is responsible for both:
• Making sure that the node is physically 

removed
• Reclaiming memory

• After logical deletion, the thread attempts 
physical removal

B CA D

Problem 2 Solution (Linked List)

• Physical removal can fail due to:
• Node was already removed 

(harmless)
• The list state has changed 

• We introduce a pruning method 
(Do_Prune):
• It searches for the node later
• Ensures safe physical removal by the 

owner
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Two Adjacent Node B and C marked for deletion

Problem 3 Solution (Linked List)



B CA D

CAS

CAS to physically unlink B and C

Problem 3 Solution (Linked List)
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CAS successful, B and C removed from the list

Problem 3 Solution (Linked List)
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CAS

Michael's Modification [SPAA '02]

A thread sees B is marked for logical deletion and attempts to do CAS 
to remove it from the list 

Problem 3 Solution (Linked List)



CA

B is removed!

Michael's Modification [SPAA '02]

Problem 3 Solution (Linked List)
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Problem 3 Solution (Linked List)
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Problem 3 Solution (Linked List)
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E CDList 2:

Problem 3 Solution (Linked List)



Natarajan-Mittal Tree

B
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C

D E

Leaf nodes contain actual keys

Keys in Internal nodes are used for traversal
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Two concurrent remove() operations 

Natarajan-Mittal Tree
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RFlg (bit 1)
Ptr (63:2)

Natarajan-Mittal Tree

LFlg (bit 0)
P
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LFlg = 1

LFlg is set to mark D for logical deletion

Natarajan-Mittal Tree
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Spare Per-Thread Block

T' P'

D is unlinked along with its parent C

E moves to the previous position of C  

Natarajan-Mittal Tree
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Michael & Scott Queue

A

Head Tail

NULL
tag
ptr

tag
ptr
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Modified Michael & Scott Queue

A
Next Next

Head Tail

ABA TAG

Last node contains tag instead of ptr

Only Head and Tail contain both tag and ptr and need W-CAS 



Evaluation Setup

• Platform: AMD EPYC 9754, 128-core, 256 threads, 384 GiB of RAM.

• Payloads: 128-byte (list, tree), 64KiB (queue, list, tree).

• SMR Schemes: Epoch-Based Reclamation (EBR), Hazard Pointers (HP).

• Benchmarks include Queue, Linked List, and Tree variants.

• Measured throughput and memory waste across various 
configurations.



Evaluation Setup

Recycling Percentages

• 50% Recycle:
• Nodes are moved between structures 50% of the time
• The other 50% of operations are regular insert and remove

• 90% Recycle:
• Most operations (90%) move nodes between structures
• Only 10% involve insertions and deletions



Evaluation: Linked List (Throughput)

128B Payload, 90% recycle 64KiB Payload, 90% recycle



Evaluation: Linked List (Throughput)

128B Payload, 50% recycle 64KiB Payload, 50% recycle



Evaluation: Natarajan-Mittal Tree 
(Throughput)

64KiB Payload, 50% recycle 64KiB Payload, 90% recycle



Availability

• Code is open-source and available at:

https://github.com/rusnikola/rrr-smr

https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr


Availability

• Code is open-source and available at:

https://github.com/rusnikola/rrr-smr

THANK YOU! QUESTIONS?

https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr
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