
RRR-SMR: Reduce, Reuse, Recycle: Better Methods
for

Practical Lock-Free Data Structures

Md Amit Hasan Arovi, arovi@psu.edu, The Pennsylvania State University, USA

Ruslan Nikolaev, rnikola@psu.edu, The Pennsylvania State University, USA

mailto:arovi@psu.edu
mailto:rnikola@psu.edu

Lock-Free Data Structures

1. Allow multiple threads to operate without locks

2. Ensure system-wide progress (at least one thread always makes
progress)

3. Avoid deadlocks and improve scalability

Lock-Free Data Structures

1. Lock-Free data structures are more difficult to use

2. In particular: not easy to move objects from one data structure
to another

Lock-Free Data Structures

1. Lock-Free data structures are more difficult to use

2. In particular: not easy to move objects from one data structure
to another

In this paper we address this problem

B CA

F GE

D

Tasks Ready To be Executed

Tasks Waiting for I/O

Example

struct task_struct {
 int tid;

 struct file *fds[N];
...........................

 …........................
 struct task_struct *next;
};

B CA

F

G

E

D

Tasks Ready To be Executed

Tasks Waiting for I/O

move()

Example

B CA

F GE

D

Tasks Ready To be Executed

Tasks Waiting for I/O

struct task_struct {
 int tid;

 struct file *fds[N];
...........................

 …........................
 struct task_struct *next;
};

Example

B CA

F GE

D

Tasks Ready To be Executed

Tasks Waiting for I/O

struct task_struct {
 int tid;

 struct file *fds[N];
...........................

 …........................
 struct task_struct *next;
};Epoch-Based Reclamation (EBR)

Hazard Pointers (HP) [TPDS '04]

Example

B CA

F

G

E

D

Tasks Ready To be Executed

Tasks Waiting for I/O

move()

1. Can work around this problem by allocating a new object and copying

2. Comes with copying overheads and sometimes infeasible (interrupts)

Example

A B

Top

Treiber's Stack

CAS: Compare-And-Swap (CAS) is an atomic instruction that compares a
memory location’s current value to an expected value and updates it to a new
value only if they match. It returns true if the update succeeds, or false otherwise.

Treiber's Stack

Top.CAS(A, B)

Thread 1 : POP (A)

Treiber’s Stack is a classic lock-free data structure that uses a singly-linked list and
the compare-and-swap (CAS) primitive to push and pop elements from the top.

A B

Top

Can we directly move objects from one
stack to another one?

Treiber's Stack

Top.CAS(A, B)

Thread 1 : POP (A)

Treiber's Stack
Treiber’s Stack is a classic lock-free data structure that uses a singly-linked list and
the compare-and-swap (CAS) primitive to push and pop elements from the top.

A B

Top
Thread 1

Thread 1 begins its operation.......

Treiber's Stack: The ABA Problem

A B

Top
Thread 1

Thread 1 calls POP

Treiber's Stack: The ABA Problem

A B

Top

Thread 1

Thread 1 gets preempted before doing Top.CAS (A, B)

Treiber's Stack: The ABA Problem

A B

Top
Thread 2

Thread 2 steps in..........

Treiber's Stack: The ABA Problem

A B

Top

Thread 2

Thread 2 removes A (POP) and changes the top to B (CAS)

Treiber's Stack: The ABA Problem

C B

Top
Thread 2

Thread 2 pushes C (new Top)

Treiber's Stack: The ABA Problem

C B

Top
Thread 2

A

Thread 2 pushes A (reusing the same memory address) and do CAS (Top, A)

Treiber's Stack: The ABA Problem

C B

Top
Thread 1

A

Thread 1 resumes and completes its Top.CAS (A, B) leaving C hanging

False Positive!

Treiber's Stack: The ABA Problem

A B

tag

NULL
Next

ptr

Wide CAS (W-CAS) & CMPXCHG16B: W-CAS (Wide Compare-And-Swap)
refers to atomic operations on larger-than-pointer-sized data (e.g., 128 bits)
and essential for lock-free data structures that use tagged pointers (e.g.,
pointer + version/tag). On x86-64, the instruction CMPXCHG16B performs an
atomic 16-byte (128-bit) compare-and-swap.

Top

Treiber's Stack: Solution for ABA

B C

More complex Data Structures: Linked List

A

Harris' Lock-Free Linked List [DISC '01]

Nodes in a linked list can be removed arbitrarily

B CA

B is marked for deletion (logical)

More complex Data Structures: Linked List

CA

B is physically unlinked from the list

More complex Data Structures: Linked List

What needs to be solved for RRR Linked List?

• ABA safety
• Strict ownership
• Safe traversal

B CA tag
ptr

tag
ptr NULL

Initial A.tag
 A.ptr
 B.tag
 A.tag
 .
 .
Initial B.tag
 B.ptr

 .
 .

Problem 1 Solution (Linked List)

B C

Problem 1 Solution (Linked List)

A tag
ptr

tag
ptr NULL

Initial A.tag
 A.ptr
 B.tag
 A.tag
 .
 .
Initial B.tag
 B.ptr

 .
 .

Strong Ownership (RRR-SMR Model)

• Logical deletion thread takes ownership of the node

• The thread is responsible for both:
• Making sure that the node is physically removed
• Reclaiming memory

B CA

Problem 2 Solution (Linked List)

Strong Ownership (RRR-SMR Model)

• Logical deletion thread takes ownership of the node

• The thread is responsible for both:
• Making sure that the node is physically removed
• Reclaiming memory

• After logical deletion, the thread attempts physical removal

B CA

Problem 2 Solution (Linked List)

Strong Ownership (RRR-SMR Model)

• Logical deletion thread takes ownership of the
node

• The thread is responsible for both:
• Making sure that the node is physically

removed
• Reclaiming memory

• After logical deletion, the thread attempts
physical removal

B CA D

Problem 2 Solution (Linked List)

• Physical removal can fail due to:
• Node was already removed

(harmless)
• The list state has changed

• We introduce a pruning method
(Do_Prune):
• It searches for the node later
• Ensures safe physical removal by the

owner

B CA D

Two Adjacent Node B and C marked for deletion

Problem 3 Solution (Linked List)

B CA D

CAS

CAS to physically unlink B and C

Problem 3 Solution (Linked List)

A D

CAS successful, B and C removed from the list

Problem 3 Solution (Linked List)

B CA

CAS

Michael's Modification [SPAA '02]

A thread sees B is marked for logical deletion and attempts to do CAS
to remove it from the list

Problem 3 Solution (Linked List)

CA

B is removed!

Michael's Modification [SPAA '02]

Problem 3 Solution (Linked List)

B CAList 1:

Problem 3 Solution (Linked List)

B CAList 1:

Problem 3 Solution (Linked List)

B CAList 1:

E CDList 2:

Problem 3 Solution (Linked List)

Natarajan-Mittal Tree

B

A

C

D E

Leaf nodes contain actual keys

Keys in Internal nodes are used for traversal

B

A

C

D E

Two concurrent remove() operations

Natarajan-Mittal Tree

B

T P
A

T P
C

D E

B

A

C

D E

L R

L R

RFlg (bit 1)
Ptr (63:2)

Natarajan-Mittal Tree

LFlg (bit 0)
P

B

A

C

D E

B

T P
A

T' P'
C

D E

L R

L R

LFlg = 1

LFlg is set to mark D for logical deletion

Natarajan-Mittal Tree

B

A

E

B

A

E

L R

Spare Per-Thread Block

T' P'

D is unlinked along with its parent C

E moves to the previous position of C

Natarajan-Mittal Tree

B C

Michael & Scott Queue

A

Head Tail

NULL
tag
ptr

tag
ptr

B C

Modified Michael & Scott Queue

A
Next Next

Head Tail

ABA TAG

Last node contains tag instead of ptr

Only Head and Tail contain both tag and ptr and need W-CAS

Evaluation Setup

• Platform: AMD EPYC 9754, 128-core, 256 threads, 384 GiB of RAM.

• Payloads: 128-byte (list, tree), 64KiB (queue, list, tree).

• SMR Schemes: Epoch-Based Reclamation (EBR), Hazard Pointers (HP).

• Benchmarks include Queue, Linked List, and Tree variants.

• Measured throughput and memory waste across various
configurations.

Evaluation Setup

Recycling Percentages

• 50% Recycle:
• Nodes are moved between structures 50% of the time
• The other 50% of operations are regular insert and remove

• 90% Recycle:
• Most operations (90%) move nodes between structures
• Only 10% involve insertions and deletions

Evaluation: Linked List (Throughput)

128B Payload, 90% recycle 64KiB Payload, 90% recycle

Evaluation: Linked List (Throughput)

128B Payload, 50% recycle 64KiB Payload, 50% recycle

Evaluation: Natarajan-Mittal Tree
(Throughput)

64KiB Payload, 50% recycle 64KiB Payload, 90% recycle

Availability

• Code is open-source and available at:

https://github.com/rusnikola/rrr-smr

https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr

Availability

• Code is open-source and available at:

https://github.com/rusnikola/rrr-smr

THANK YOU! QUESTIONS?

https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr
https://github.com/rusnikola/rrr-smr

	Slide 1: RRR-SMR: Reduce, Reuse, Recycle: Better Methods for Practical Lock-Free Data Structures
	Slide 2: Lock-Free Data Structures
	Slide 3: Lock-Free Data Structures
	Slide 4: Lock-Free Data Structures
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Treiber's Stack
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: More complex Data Structures: Linked List
	Slide 22
	Slide 23
	Slide 24: What needs to be solved for RRR Linked List?
	Slide 25
	Slide 26: Problem 1 Solution (Linked List)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Michael & Scott Queue
	Slide 44: Modified Michael & Scott Queue
	Slide 45: Evaluation Setup
	Slide 46: Evaluation Setup
	Slide 47: Evaluation: Linked List (Throughput)
	Slide 48: Evaluation: Linked List (Throughput)
	Slide 49: Evaluation: Natarajan-Mittal Tree (Throughput)
	Slide 50: Availability
	Slide 51: Availability

