
reInstruct: Toward OS-aware CPU
microcode reprogramming

Yubo Wang Prof. Ruslan Nikolaev Prof. Binoy Ravindran
Penn State Penn State Virginia Tech

yubow@psu.edu rnikola@psu.edu binoy@vt.edu

What is Microcode?

What is Microcode?

• Function: Translates ISA instructions into
sequences of micro-operations (µops).
Many complex instructions are implemented
this way.

What is Microcode?

• Function: Translates ISA instructions into
sequences of micro-operations (µops).
Many complex instructions are implemented
this way.

• Role: Works like firmware for the processor.
Defines how each instruction behaves.

Why OS Researchers Should Care

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:
• Optimize performance;

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:
• Optimize performance;
• Explore future ISA extensions;

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:
• Optimize performance;
• Explore future ISA extensions;
• Study security and isolation

boundaries.

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:
• Optimize performance;
• Explore future ISA extensions;
• Study security and isolation

boundaries.

Why OS Researchers Should Care

• OS kernels heavily depend on
instruction semantics: SYSCALL,
privilege checks.

• If microcode can be modified:
• Optimize performance;
• Explore future ISA extensions;
• Study security and isolation

boundaries.

The Status Quo: Locked by Vendors🔒

• Microcode is proprietary: no documentation, updates
cryptographically signed, only distributed via vendor BIOS/OS
channels.

• System software and researchers cannot observe or modify
instruction behavior.

• So, the problem is, if we want to observe or modify the microcode
layer, it is very difficult.

Emerging Possibility

Emerging Possibility

Emerging Possibility

• INTEL-SA-00086: grants privilege escalation.

Emerging Possibility

• INTEL-SA-00086: grants privilege escalation.

• CHIP-RED-PILL enabled a hidden “Red Unlock” mode
to access CPU microcode internals.

Emerging Possibility

• INTEL-SA-00086: grants privilege escalation.

• CHIP-RED-PILL enabled a hidden “Red Unlock” mode
to access CPU microcode internals.

• CHIP-RED-PILL revealed the vendor µop format and
encodings, which made authoring custom microcode
feasible.

Understanding Goldmont’s Microcode Mechanism

Understanding Goldmont’s Microcode Mechanism

Understanding Goldmont’s Microcode Mechanism

Understanding Goldmont’s Microcode Mechanism

Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and
trace framework

Only runs in UEFI; patches disappear after
boot; no SMP support.

Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and
trace framework

Only runs in UEFI; patches disappear after
boot; no SMP support.

Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and
trace framework

Only runs in UEFI; patches disappear after
boot; no SMP support.

Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and
trace framework

Only runs in UEFI; patches disappear after
boot; no SMP support.

Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and
trace framework

Only runs in UEFI; patches disappear after
boot; no SMP support.

These efforts proved that microcode can be modified.
But not in a standard Linux runtime environment.

Motivation for Our Work

Motivation for Our Work

• We need a practical, OS-integrated framework that brings custom
microcode into normal Linux systems.

Motivation for Our Work

• We need a practical, OS-integrated framework that brings custom
microcode into normal Linux systems.

• Need to support:
• Multi-core (SMP) patching;

Motivation for Our Work

• We need a practical, OS-integrated framework that brings custom
microcode into normal Linux systems.

• Need to support:
• Multi-core (SMP) patching;
• Runtime updates without reboot;
• Fine-grained microcode management;

Motivation for Our Work

• We need a practical, OS-integrated framework that brings custom
microcode into normal Linux systems.

• Need to support:
• Multi-core (SMP) patching;
• Runtime updates without reboot;
• Fine-grained microcode management;
• User-space interface.

Where we built on prior work

Where we built on prior work

• We adopted CHIP-RED-PILL’s idea to unlock our board’s hidden debug
interfaces (enables MSRAM / match table access).

Where we built on prior work

• We adopted CHIP-RED-PILL’s idea to unlock our board’s hidden debug
interfaces (enables MSRAM / match table access).
• We adopted CustomProcessingUnit’s microcode toolchain (DSL and

assembler/serializer).
μop:

Seqword:

Our Framework in Linux

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.
• Disabled CPU C-states to retain patches.

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.
• Disabled CPU C-states to retain patches.

• Developed a Linux kernel module “Ucode”:

Linux kernel

Ucode

ioctl

Others

User-space Program

ioctl(UCODE, patch)

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.
• Disabled CPU C-states to retain patches.

• Developed a Linux kernel module “Ucode”:
• Exposes a user-space ioctl interface;

Linux kernel

Ucode

ioctl

Others

User-space Program

ioctl(UCODE, patch)

Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.
• Disabled CPU C-states to retain patches.

• Developed a Linux kernel module “Ucode”:
• Exposes a user-space ioctl interface;
• Accepts and applies custom microcode patches. Linux kernel

Ucode

ioctl

Others

User-space Program

ioctl(UCODE, patch)

Microcode-Based Kernel Memory Access

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.
• Modified behavior: RBX := *(uint64_t *)RAX

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.
• Modified behavior: RBX := *(uint64_t *)RAX

• Key Properties:
• No privilege checks: bypasses CPL, SMEP, SMAP;

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.
• Modified behavior: RBX := *(uint64_t *)RAX

• Key Properties:
• No privilege checks: bypasses CPL, SMEP, SMAP;
• Works on kernel addresses (0xffff...);

Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.
• Modified behavior: RBX := *(uint64_t *)RAX

• Key Properties:
• No privilege checks: bypasses CPL, SMEP, SMAP;
• Works on kernel addresses (0xffff...);
• Silent execution: does not raise exceptions or faults.

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

• Objective:
• Enumerate all processes in the system by traversing the kernel’s task_struct list.

Preliminary Results: Reading Process List

• Objective:
• Enumerate all processes in the system by traversing the kernel’s task_struct list.
• Demonstrate ability to extract arbitrary fields from each task.

Preliminary Results: Reading Process List

• Objective:
• Enumerate all processes in the system by traversing the kernel’s task_struct list.
• Demonstrate ability to extract arbitrary fields from each task.

• Method Overview (1st part):
• Locate the symbol init_task, which gives us the address of the first task_struct.

task_struct

init_task

Preliminary Results: Reading Process List

• Objective:
• Enumerate all processes in the system by traversing the kernel’s task_struct list.
• Demonstrate ability to extract arbitrary fields from each task.

• Method Overview (1st part):
• Locate the symbol init_task, which gives us the address of the first task_struct.
• Once a task_struct is found, we can extract fields by their known offsets:

• For example, to read the process name: comm = *(task_addr + comm_offset)

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

Preliminary Results: Reading Process List

• Method Overview (2nd part):

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.
• By reading tasks.next (at a known offset), we can:

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.
• By reading tasks.next (at a known offset), we can:

• Walk to the next task;
• Repeat until we loop back to init_task;

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.
• By reading tasks.next (at a known offset), we can:

• Walk to the next task;
• Repeat until we loop back to init_task;
• Iterate through all tasks and print their comm (process name).

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.
• By reading tasks.next (at a known offset), we can:

• Walk to the next task;
• Repeat until we loop back to init_task;
• Iterate through all tasks and print their comm (process name).

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

• Method Overview (2nd part):
• Linux links all tasks via a circular doubly-linked list using task_struct.tasks.
• By reading tasks.next (at a known offset), we can:

• Walk to the next task;
• Repeat until we loop back to init_task;
• Iterate through all tasks and print their comm (process name).

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...

task_struct

PID = 2

COMM = xxx

list_head tasks

...

…

task_struct

PID = 1234

COMM = xxx

list_head tasks

...

…

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading Process List

Preliminary Results: Reading sudo Password

Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;

Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;
• Target the input buffer of the tty associated with the sudo process.

Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;
• Target the input buffer of the tty associated with the sudo process.

• Method Overview:
• Use previously described technique to find the sudo process;

Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;
• Target the input buffer of the tty associated with the sudo process.

• Method Overview:
• Use previously described technique to find the sudo process;
• Navigate to its tty input buffer via the following pointer chain:

• task_struct → files_struct → fdtable → file[0] → private_data → tty_struct → ldisc → n_tty_data → read_buf

Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;
• Target the input buffer of the tty associated with the sudo process.

• Method Overview:
• Use previously described technique to find the sudo process;
• Navigate to its tty input buffer via the following pointer chain:

• task_struct → files_struct → fdtable → file[0] → private_data → tty_struct → ldisc → n_tty_data → read_buf

• Read the password from the buffer.

Preliminary Results: Reading sudo Password

Microsoft Game DVR

labuser@bmax-1: ~/microcode-project

Preliminary Results: getcpu() Syscall Acceleration

Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work
→ return → user.

Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work
→ return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles
for small queries.

Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work
→ return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles
for small queries.

• Many OS queries are tiny (e.g., getcpu(), getpid(), getuid()), yet pay
full syscall cost.

Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work →
return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles for
small queries.

• Many OS queries are tiny (e.g., getcpu(), getpid(), getuid()), yet pay full
syscall cost.

• Example: getcpu() syscall measured ≈ 511 cycles (baseline in our
experiments).

Preliminary Results: getcpu() Syscall Acceleration

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each

logical CPU.

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each

logical CPU.
• On CPU0: rax=ZEROEXT(0)

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each

logical CPU.
• On CPU0: rax=ZEROEXT(0)
• On CPU1: rax=ZEROEXT(1)

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each

logical CPU.
• On CPU0: rax=ZEROEXT(0)
• On CPU1: rax=ZEROEXT(1)
• On CPU2: rax=ZEROEXT(2) …

Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each

logical CPU.
• On CPU0: rax=ZEROEXT(0)
• On CPU1: rax=ZEROEXT(1)
• On CPU2: rax=ZEROEXT(2) …

• User program executes RDRAND → immediate core ID returned (no
syscall, no kernel transition).

Preliminary Results: getcpu() Syscall Acceleration

• Microcode version eliminates syscall transition overhead.

Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.

Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.

Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.

Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.

• Demonstrates microcode as a viable fast path for frequent syscalls.

Future Work

Future Work

• More Available µops
Extend patching to more instruction types, enabling richer
functionality and finer performance control.

Future Work

• More Available µops
Extend patching to more instruction types, enabling richer
functionality and finer performance control.
• Better Framework

Build a microcode framework that supports per-core and per-thread
customization, integrates with the Linux kernel, and provides easier
user-space access.

Future Work

• More Available µops
Extend patching to more instruction types, enabling richer
functionality and finer performance control.
• Better Framework

Build a microcode framework that supports per-core and per-thread
customization, integrates with the Linux kernel, and provides easier
user-space access.
• AMD Support

Port and test on AMD Zen CPUs to explore cross-vendor compatibility
and new customization opportunities.

Q & A

Thank you!

This work is supported in part by the US Office of Naval
Research (ONR) under grant N000142412642.

	reInstruct: Toward OS-aware CPU microcode reprogramming
	What is Microcode? (1)
	What is Microcode? (2)
	What is Microcode? (3)
	Why OS Researchers Should Care (1)
	Why OS Researchers Should Care (2)
	Why OS Researchers Should Care (3)
	Why OS Researchers Should Care (4)
	Why OS Researchers Should Care (5)
	Why OS Researchers Should Care (6)
	Why OS Researchers Should Care (7)
	Why OS Researchers Should Care (8)
	The Status Quo: Locked by Vendors🔒
	Emerging Possibility (1)
	Emerging Possibility (2)
	Emerging Possibility (3)
	Emerging Possibility (4)
	Emerging Possibility (5)
	Understanding Goldmont’s Microcode Mechanism (1)
	Understanding Goldmont’s Microcode Mechanism (2)
	Understanding Goldmont’s Microcode Mechanism (3)
	Understanding Goldmont’s Microcode Mechanism (4)
	Prior Microcode Research Efforts (1)
	Prior Microcode Research Efforts (2)
	Prior Microcode Research Efforts (3)
	Prior Microcode Research Efforts (4)
	Prior Microcode Research Efforts (5)
	Motivation for Our Work (1)
	Motivation for Our Work (2)
	Motivation for Our Work (3)
	Motivation for Our Work (4)
	Motivation for Our Work (5)
	Where we built on prior work (1)
	Where we built on prior work (2)
	Where we built on prior work (3)
	Our Framework in Linux (1)
	Our Framework in Linux (2)
	Our Framework in Linux (3)
	Our Framework in Linux (4)
	Our Framework in Linux (5)
	Our Framework in Linux (6)
	Our Framework in Linux (7)
	Microcode-Based Kernel Memory Access (1)
	Microcode-Based Kernel Memory Access (2)
	Microcode-Based Kernel Memory Access (3)
	Microcode-Based Kernel Memory Access (4)
	Microcode-Based Kernel Memory Access (5)
	Microcode-Based Kernel Memory Access (6)
	Microcode-Based Kernel Memory Access (7)
	Preliminary Results: Reading Process List (1)
	Preliminary Results: Reading Process List (2)
	Preliminary Results: Reading Process List (3)
	Preliminary Results: Reading Process List (4)
	Preliminary Results: Reading Process List (5)
	Preliminary Results: Reading Process List (2) (1)
	Preliminary Results: Reading Process List (2) (2)
	Preliminary Results: Reading Process List (2) (3)
	Preliminary Results: Reading Process List (2) (4)
	Preliminary Results: Reading Process List (2) (5)
	Preliminary Results: Reading Process List (2) (6)
	Preliminary Results: Reading Process List (2) (7)
	Preliminary Results: Reading Process List (2) (8)
	Preliminary Results: Reading Process List (3) (1)
	Preliminary Results: Reading Process List (3) (2)
	Preliminary Results: Reading Process List (3) (3)
	Preliminary Results: Reading Process List (3) (4)
	Preliminary Results: Reading Process List (3) (5)
	Preliminary Results: Reading Process List (3) (6)
	Preliminary Results: Reading Process List (3) (7)
	Preliminary Results: Reading Process List (3) (8)
	Preliminary Results: Reading Process List (3) (9)
	Preliminary Results: Reading Process List (3) (10)
	Preliminary Results: Reading sudo Password (1)
	Preliminary Results: Reading sudo Password (2)
	Preliminary Results: Reading sudo Password (3)
	Preliminary Results: Reading sudo Password (4)
	Preliminary Results: Reading sudo Password (5)
	Preliminary Results: Reading sudo Password (6)
	Preliminary Results: Reading sudo Password (2)
	Preliminary Results: getcpu() Syscall Acceleration (1)
	Preliminary Results: getcpu() Syscall Acceleration (2)
	Preliminary Results: getcpu() Syscall Acceleration (3)
	Preliminary Results: getcpu() Syscall Acceleration (4)
	Preliminary Results: getcpu() Syscall Acceleration (5)
	Preliminary Results: getcpu() Syscall Acceleration (2) (1)
	Preliminary Results: getcpu() Syscall Acceleration (2) (2)
	Preliminary Results: getcpu() Syscall Acceleration (2) (3)
	Preliminary Results: getcpu() Syscall Acceleration (2) (4)
	Preliminary Results: getcpu() Syscall Acceleration (2) (5)
	Preliminary Results: getcpu() Syscall Acceleration (2) (6)
	Preliminary Results: getcpu() Syscall Acceleration (2) (7)
	Preliminary Results: getcpu() Syscall Acceleration (3) (1)
	Preliminary Results: getcpu() Syscall Acceleration (3) (2)
	Preliminary Results: getcpu() Syscall Acceleration (3) (3)
	Preliminary Results: getcpu() Syscall Acceleration (3) (4)
	Preliminary Results: getcpu() Syscall Acceleration (3) (5)
	Future Work (1)
	Future Work (2)
	Future Work (3)
	Future Work (4)
	Q & A
	Thank you!

