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• Function: Translates ISA instructions into 
sequences of micro-operations (µops). 
Many complex instructions are implemented 
this way.

• Role: Works like firmware for the processor. 
Defines how each instruction behaves.
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• OS kernels heavily depend on 
instruction semantics: SYSCALL, 
privilege checks.

• If microcode can be modified:
• Optimize performance;
• Explore future ISA extensions;
• Study security and isolation 

boundaries.



The Status Quo: Locked by Vendors🔒

• Microcode is proprietary: no documentation, updates 
cryptographically signed, only distributed via vendor BIOS/OS 
channels.

• System software and researchers cannot observe or modify 
instruction behavior.

• So, the problem is, if we want to observe or modify the microcode 
layer, it is very difficult.
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Emerging Possibility

• INTEL-SA-00086: grants privilege escalation.

• CHIP-RED-PILL enabled a hidden “Red Unlock” mode 
to access CPU microcode internals.

• CHIP-RED-PILL revealed the vendor µop format and 
encodings, which made authoring custom microcode 
feasible.
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Prior Microcode Research Efforts

Work Main Contributions Limitation

CHIP-RED-PILL
 (Ermolov et al., 2021)

Red Unlock,
μop Structure Unlock Only

CustomProcessingUnit
 (Borrello et al., WOOT 23)

UEFI-based patch and 
trace framework

Only runs in UEFI; patches disappear after 
boot; no SMP support.

These efforts proved that microcode can be modified.
But not in a standard Linux runtime environment.
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Motivation for Our Work

• We need a practical, OS-integrated framework that brings custom 
microcode  into normal Linux systems.

• Need to support:
• Multi-core (SMP) patching;
• Runtime updates without reboot;
• Fine-grained microcode management;
• User-space interface.
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Where we built on prior work

• We adopted CHIP-RED-PILL’s idea to unlock our board’s hidden debug 
interfaces (enables MSRAM / match table access).
• We adopted CustomProcessingUnit’s microcode toolchain (DSL and 

assembler/serializer).
μop:

Seqword:
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Our Framework in Linux

• Disabled Linux’s built-in microcode subsystem:
• Removed boot-time microcode update.
• Disabled CPU C-states to retain patches.

• Developed a Linux kernel module “Ucode”:
• Exposes a user-space ioctl interface;
• Accepts and applies custom microcode patches. Linux kernel

Ucode

ioctl

Others

User-space Program

ioctl(UCODE, patch)
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Microcode-Based Kernel Memory Access

• Goal: Enable a user-space instruction to read from any virtual address, including 
kernel space, without triggering faults or access checks.

• We replaced the microcode of the RDRAND instruction:
• Original behavior: return a random number.
• Modified behavior: RBX := *(uint64_t *)RAX

• Key Properties:
• No privilege checks: bypasses CPL, SMEP, SMAP;
• Works on kernel addresses (0xffff...);
• Silent execution: does not raise exceptions or faults.
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• Objective:
• Enumerate all processes in the system by traversing the kernel’s task_struct list.
• Demonstrate ability to extract arbitrary fields from each task.

• Method Overview (1st part):
• Locate the symbol init_task, which gives us the address of the first task_struct.
• Once a task_struct is found, we can extract fields by their known offsets:

• For example, to read the process name: comm = *(task_addr + comm_offset)

task_struct

PID = 1

COMM = swapper

list_head tasks
init_task

...
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Preliminary Results: Reading sudo Password

• Objective:
• From a user-space program, extract the password typed into a sudo prompt;
• Target the input buffer of the tty associated with the sudo process.

• Method Overview:
• Use previously described technique to find the sudo process;
• Navigate to its tty input buffer via the following pointer chain:

• task_struct → files_struct → fdtable → file[0] → private_data → tty_struct → ldisc → n_tty_data → read_buf

• Read the password from the buffer.



Preliminary Results: Reading sudo Password


Microsoft Game DVR

labuser@bmax-1: ~/microcode-project



Preliminary Results: getcpu() Syscall Acceleration



Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work 
→ return → user.



Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work 
→ return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles 
for small queries.



Preliminary Results: getcpu() Syscall Acceleration

• A typical syscall involves: user → trap → kernel entry → kernel work 
→ return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles 
for small queries.

• Many OS queries are tiny (e.g., getcpu(), getpid(), getuid()), yet pay 
full syscall cost.
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• A typical syscall involves: user → trap → kernel entry → kernel work → 
return → user.

• Mode switches + stack/frame setup + validation = hundreds of cycles for 
small queries.

• Many OS queries are tiny (e.g., getcpu(), getpid(), getuid()), yet pay full 
syscall cost.

• Example: getcpu() syscall measured ≈ 511 cycles (baseline in our 
experiments).
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Preliminary Results: getcpu() Syscall Acceleration

• Idea: replace a user-visible instruction (we use RDRAND) with a per-
core microcode patch that returns the core ID.
• Per-core patches: install different constant-return microcode on each 

logical CPU.
• On CPU0: rax=ZEROEXT(0)
• On CPU1: rax=ZEROEXT(1)
• On CPU2: rax=ZEROEXT(2) …

• User program executes RDRAND → immediate core ID returned (no 
syscall, no kernel transition).



Preliminary Results: getcpu() Syscall Acceleration

• Microcode version eliminates syscall transition overhead.



Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.



Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.



Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.



Preliminary Results: getcpu() Syscall Acceleration

Method Description Latency (cycles) Speed-up

getcpu() system call User → kernel → scheduler lookup → return 511 1×

Microcode version Direct constant return from patched RDRAND 43 ≈12×

Native RDRAND Hardware random generator baseline 9 N/A

• Microcode version eliminates syscall transition overhead.

• Demonstrates microcode as a viable fast path for frequent syscalls.
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Future Work

• More Available µops
Extend patching to more instruction types, enabling richer 
functionality and finer performance control.
• Better Framework

Build a microcode framework that supports per-core and per-thread 
customization, integrates with the Linux kernel, and provides easier 
user-space access.
• AMD Support

Port and test on AMD Zen CPUs to explore cross-vendor compatibility 
and new customization opportunities.
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This work is supported in part by the US Office of Naval 
Research (ONR) under grant N000142412642. 
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