
Fixing Non-blocking Data Structures for Better
Compatibility with Memory Reclamation Schemes

Md Amit Hasan Arovi
The Pennsylvania State University

University Park, USA
arovi@psu.edu

Ruslan Nikolaev
The Pennsylvania State University

University Park, USA
rnikola@psu.edu

Abstract
We present a new technique, Safe Concurrent Optimistic
Traversals (SCOT), to address a well-known problem related
to optimistic traversals with classical and more recent safe
memory reclamation (SMR) schemes, such as Hazard Point-
ers (HP), Hazard Eras (HE), Interval-Based Reclamation (IBR),
and Hyaline. Unlike Epoch-Based Reclamation (EBR), these
(robust) schemes protect against stalled threads but lack
support for well-known data structures with optimistic tra-
versals, e.g., Harris’ list and the Natarajan-Mittal tree. Such
schemes are either incompatible with them or need changes
with performance trade-offs (e.g., the Harris-Michael list).

SCOT keeps existing SMR schemes intact and retains per-
formance benefits of original data structures. We implement
and evaluate SCOT with Harris’ list and the Natarajan-Mittal
tree, but it is also applicable to other data structures. Fur-
thermore, we provide a simple modification for wait-free
traversals. We observe similar performance speedups (e.g.,
Harris vs. Harris-Michael lists) that were previously avail-
able only to EBR users. Our version of the tree also achieves
very high throughput, comparable to that of EBR, which is
often treated as a practical upper bound.

CCS Concepts: • Theory of computation→ Concurrent
algorithms.

Keywords: hazard pointers, non-blocking, wait-free, Harris’
list, Natarajan-Mittal tree

ACM Reference Format:
Md Amit Hasan Arovi and Ruslan Nikolaev. 2026. Fixing Non-
blocking Data Structures for Better Compatibility with Memory
Reclamation Schemes. In Proceedings of the 31st ACM SIGPLAN An-
nual Symposium on Principles and Practice of Parallel Programming
(PPoPP ’26), January 31 – February 4, 2026, Sydney, NSW, Australia.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3774934.
3786455

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PPoPP ’26, Sydney, NSW, Australia
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2310-0/2026/01
https://doi.org/10.1145/3774934.3786455

1 Introduction
With the rise of multicore and manycore systems, paralleliza-
tion becomes essential for improving performance across
the entire software stack, from applications to operating sys-
tem (OS) components. Non-blocking data structures, which
are not dependent on mutual exclusion, are becoming in-
creasingly popular due to their scalability, throughput, and
latency characteristics. Unfortunately, many data structures
that utilize non-blocking techniques conflict with fundamen-
tal assumptions of classical memory management. This is
because memory cannot be promptly reclaimed after an ob-
ject is removed from a data structure, as there may still exist
stale pointers to the object due to ongoing operations. When
usingmanual memorymanagement, memory has to be safely
reclaimed by freeing memory only when all ongoing opera-
tions with stale pointers complete. A number of safe memory
reclamation (SMR) techniques were proposed for C, C++,
and Rust. While we do not want to compromise data struc-
ture progress properties, it can be challenging to achieve
several highly desirable properties simultaneously with non-
blocking progress in SMR. A recent work [30] sheds more
light onto this conundrum: it proves that it is impossible
to achieve three highly desirable SMR properties simulta-
neously, i.e., only two properties can ever be achieved: (A)
robustness (bounded memory usage), (B) easy integration
(no dependency on any special APIs, such as roll-back mech-
anisms or OS-based primitives), and (C) wide applicability
(compatibility with most data structures without changes).

While striving to have (A) for non-blocking progress,1
many researchers also prioritize (C) because, intuitively, their
goal is to support as many data structures as possible. How-
ever, we argue that sacrificing (C) rather than (B) by carefully
adapting existing problematic data structures is a “necessary
evil,” which is a crucial new insight. First, (C) in its strongest
form – applying to all data structures – is only currently
known to exist in blocking SMR schemes [30]. Second, even
if we accept (C) in its relaxed form – applying to most data
structures – the absence of (B) would lead to either inability
to achieve strict non-blocking progress in practice due to
OS dependency [1, 2, 6, 8, 31], lack of universally-defined
APIs [29], or both. Third, the lack of (C) implies that adapta-
tions are required, not impossibility of the implementation.

1If memory usage is unbounded, no further system progress can be made
once memory is exhausted, regardless of whether actual locks are present.

26

https://orcid.org/0009-0009-4341-1954
https://orcid.org/0000-0002-1699-0593
https://doi.org/10.1145/3774934.3786455
https://doi.org/10.1145/3774934.3786455
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774934.3786455
https://www.acm.org/publications/policies/artifact-review-and-badging-current

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

EBR [12] is a fast and easy-to-use approach but has a seri-
ous drawback that any stalled thread results in unbounded
memory usage, i.e., it lacks (A). Once exhausting memory,
the system must either reboot or block until memory is freed.
HP [21] is an antipode of EBR: it is slower and more diffi-
cult to use but provides robustness with strict non-blocking
guarantees. Prior to this work, well-known data structures
such as Harris’ linked list [14] with optimistic traversals
and the Natarajan-Mittal binary search tree (BST) [24] were
not known to work well with HP [3, 19],2 which is due to
HP’s lack of the wide-applicability (C) property. A number
of other recent schemes, including Interval Based Reclama-
tion (IBR) [34], Hyaline-1S [26], and Hazard Eras (HE) [28],
sometimes offer better performance but have similar issues
to HP, though IBR and Hyaline-1S are generally easier to
use in practice. HP++ [19] is another recent scheme. HP++
is slower than HP and, strictly speaking, makes compro-
mises with both (B) and (C), but it still supports these two
data structures. We are inspired by HP++’s success, which
indicates that many data structures can still be imple-
mented, despite earlier views about the limited applicability
of SMR schemes in this category.
This paper introduces an alternative method, Safe Con-

current Optimistic Traversals (SCOT). We depart from the
typical strategy of designing a “silver-bullet” SMR approach
for the reasons described above. Instead, we argue that the
problematic data structures can be modified to accommodate
SMR schemes with strict non-blocking properties. SCOT’s
key insight is that optimistic traversals are still feasible with
HP and other SMR schemes as long as at every traversal step,
we perform a simple safety check, which allows us to pro-
ceed safely to the next data-structure object. We also discuss
how to address our approach’s limits for wait-free traversals.

We present SCOT for Harris’ list and the Natarajan-Mittal
tree and evaluate these data structures with HP, HE, IBR and
Hyaline-1S. We also compare results to EBR and show that
performance benefits can be preserved in the same manner.

2 Background
2.1 Non-Blocking Progress Guarantees
In the literature, several non-blocking progress properties
are considered. With obstruction-freedom, progress is only
guaranteedwhen a thread runs in isolation from others. Lock-
freedom allows threads to interfere with each other while
still guaranteeing that at least one thread makes progress
in a finite number of steps. (It should be noted that good
lock-free algorithms allow multiple threads to make con-
current progress in practice.) This should not be confused
with “lockless” approaches that simply avoid explicit locks,
where one preempted thread can still block all other threads.
Wait-freedom is a much stronger property which requires
that all threads make progress in a finite number of steps.
2A few issueswere discussed in [3], but only thememory leakwas addressed.

Most non-blocking data structures use compare-and-swap
(CAS) for synchronization. CAS is an instruction which takes
three arguments: a pointer to the shared variable to be up-
dated, an expected value, and a desired new value; CAS atom-
ically replaces the shared-variable value with the desired
value if its current value equals the expected value.

2.2 Memory Reclamation
All SMR schemes used in this paper follow the same lifecycle:
a removed node is first retired, and then reclaimed only once
the scheme guarantees that no thread can access it anymore.
Each SMR scheme maintains per-thread metadata (epochs,
eras, or reserved pointers) to determine reclamation safety.
Although SMR mechanisms differ, they implement the same
two-step process: unlink and retire, then reclaim when safe.

2.2.1 Epoch-Based Reclamation (EBR). Epoch-Based
Reclamation (EBR) [12, 15] ensures memory safety using a
global epoch. Threads entering a critical section publish the
current epoch, and retired nodes are stored in per-thread
lists tagged with that epoch. The global epoch advances peri-
odically, and nodes are reclaimed only after all active threads
have moved beyond the retire epoch. The main limitation
of EBR is its sensitivity to stalled or crashed threads, since
the non-progressing thread can prevent epoch advancement
and lead to unbounded memory accumulation.

2.2.2 Hazard Pointers (HP). Hazard Pointers (HP) [21]
ensure memory safety by requiring each thread to publish
any pointer it may dereference in a globally visible hazard
slot. A retired object is reclaimed only after scanning all slots
to verify that no thread still references it. This makes HP
robust to stalled or preempted threads because it does not
rely on global quiescence. The approach introduces overhead
due to memory barriers and hazard-slot scans, and it also
complicates traversal-heavy code. Despite these costs, HP
remains widely used for strong safety guarantees.
In Section 3, we rely on the protect and dup operations

(shown in Figure 1). protect safely retrieves an object by
making a reservation in the global array; the idea is that other
threads will not reclaim reserved pointers. Each local pointer
has a unique index. Due to a small race window, HP verifies in
a loop that the pointer has not changed after the reservation
was made. dup copies an already protected pointer from one
hazard slot to another, enabling safe transitions between
traversal roles (e.g., from the next to the current pointer).
This is crucial to avoid transient unprotected states. (An
alternative to dup is index renaming via an indirection array,
but from our observations, dup is generally cheaper.)

2.2.3 Hazard Eras (HE). Hazard Eras (HE) [28] optimize
hazard pointers by using logical timestamps (“eras”) instead
of explicit pointer protection. Threads record the current
era when accessing an object, and retired objects are tagged
with a retire era; reclamation is safe once no thread holds an

27

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

1 node_t *protect(node_t* &var, int idx)
2 node_t *ret, *n = nullptr;
3 while ((ret = var.load()) != n) do
4 hp[TID][idx] = ret; // Also clear
5 n = ret; // logical-deletion bits

6 return ret;

// Duplicate 𝐻𝑃𝑖 to 𝐻𝑃 𝑗

7 node_t *dup(int i, int j)
8 node_t* p = hp[TID][i];

// Release semantics
9 hp[TID][j] = p;

10 return p;

Figure 1. HP methods. (TID is the current thread number.)

access era that intersects with it. This temporal mechanism
is an alternative to the direct pointer mechanism and reduces
the number of memory barriers compared to HP.

Table 1. Subjective performance characterization of common
non-blocking data structures and their compatibility with
SMRs. (* HP column also applies to HE/IBR/Hyaline-1S.)

Data Structure Fast EBR HP* HP* with SCOT

Harris’ Linked List [14] ✔ ✔ ✘ ✔
Harris-Michael Linked List [20] ✓ ✔ ✔ ✔
Fraser’s Skip List [12] ✔ ✔ ✘ ✔
Herlihy-Shavit Skip List [18] ✓ ✔ ✔ ✔
Natarajan-Mittal Tree [24] ✔ ✔ ✘ ✔
Ellen et al. Tree [11] ✘ ✔ ✔ ✔

2.2.4 Interval-BasedReclamation (IBR). Interval-Based
Reclamation (IBR) [34] extends era-based methods by track-
ing access intervals rather than individual accesses. Each
thread maintains a birth and retire era, and a retired node
is reclaimable once no thread’s interval overlaps with its
lifetime. IBR avoids explicit tracking of local pointers via
indices, which simplifies its programming model.

2.2.5 Hyaline-1S. Hyaline-1S [26] is another SMR tech-
nique, which adopts the birth era approach from HE and
IBR. Instead of retire eras, it maintains an object (reference)
counter. Hyaline-1S reduces memory barriers by using refer-
ence counting only during reclamation. Each thread main-
tains a birth era, and an object is reclaimed only when its
implicit lifetime interval does not overlap with any active
thread’s era, ensuring safety even with stalled threads. Recla-
mation is done by any thread, improving the performance.

2.3 Overview of Data Structures
Table 1 characterizes common data structures by speed and
SMR compatibility, both original and with SCOT. We omit
hash maps as they are simply arrays of Harris’ or Harris-
Michael lists. These data structures employ “logical” deletion,
i.e., a node inside a data structure is first simply marked (by
stealing one bit from a node pointer), and then unlinked
from the data structure (i.e., “physically” deleted). Harris’ list
and Fraser’s skip list can use read-only3 optimistic traversals,
3The original version [14] lacks the read-only optimization from [18].

Thread 1
(Search)

Thread 2
 (Delete)

N1 N2 N3
Unlinking

SEGFAULT : N3

Reclaim N3

N4

Mark N2

Thread 3
 (Delete)

Mark N3

Figure 2. Unsafe optimistic traversal of Harris’ linked list
with HP: accessing nodes after N2 may cause SEGFAULTs.

which allow for safely continuing the iteration through the
data structure, even when encountering logically deleted
nodes. Moreover, a chain of consecutive logically deleted
nodes is retired using one CAS operation. These optimiza-
tions improve performance and reduce contention.

However, as we discuss below, this approach is incompat-
ible with HP. Harris-Michael lists and Herlihy-Shavit skip
lists [18] use a different approach: they still use “logical” dele-
tion. However, they mandate that logically deleted nodes are
removed immediately after the first encounter and before
proceeding further, including the search operation. Ellen et al.
tree and the Natarajan-Mittal tree operate on tree branches
rather than individual nodes. However, there is a similar dis-
tinction between them with respect to optimistic traversals
and ability to remove multiple “logically” deleted branches.
As we show in the table, data structures with optimistic

traversals are incompatible with HP, HE, IBR, and Hyaline-
1S, a problem that we address in this paper.

2.4 Harris’ and Harris-Michael Linked Lists
The main challenge in lock-free linked lists is allowing a
deleting thread to mark a node as deleted and update the
preceding node’s next pointer. Timothy L. Harris solved
this [14] by using helping threads during deletion. A deleting
thread first marks a node as “logically” deleted by updating
its next pointer, and then the node is “physically” removed by
the deleting thread or a helper. (Search jumps over logically
deleted nodes, so it is not a conflicting operation, but a con-
current Insert or Delete that requires the physical removal of
the node is). Harris’ list supports optimistic traversals, mean-
ing that logically deleted nodes can still be traversed and
bypassed by a search operation without immediate physical
removal. This allows a thread to defer unlinking of logically
deleted nodes until it reaches the intended destination node.

However, this approach poses challenges for HP (Figure 2).
Suppose Thread 3 marks N2 for deletion but has not yet un-
linked it; Thread 2 marks N3 and unlinks the entire chain
between N1 and N4 (assuming all consecutive nodes are
logically deleted). Meanwhile, Thread 1, traversing the list,
reaches N2 before Thread 2 physically removes the chain and
retires its nodes. Although Thread 2 retires N2, it remains in
the HP limbo list (i.e., the list of retired but not-yet reclaimed
nodes) since Thread 1 reserved it before the physical deletion.

28

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

1 struct {
2 node_t * Next; // Next node
3 key_t Key; // Any key type
4 } node_t;
5 node_t * Head; // List head
6 bool Insert(key_t key)
7 node_t *new =

malloc(sizeof(node_t));
8 new->Key = key;
9 node_t **prev, *curr, *next;

10 while true do
11 if (Do_Find(key, &prev,

&curr, &next, false))
12 free(new);
13 return false;

14 new->Next = curr;
15 if (CAS(prev, curr, new))

return true;

16 bool Delete(key_t key)
17 node_t **prev, *curr, *next;
18 while true do
19 if (!Do_Find(key, &prev,

&curr, &next, false))
20 return false;

21 if (!CAS(&curr->Next,
next, getMarked(next)))
continue;

22 if (CAS(prev, curr, next))
// Delete curr

23 return true;

24 void Init()
25 Head = malloc(sizeof(node_t));
26 Head->Next = nullptr;
27 Head->Key =∞;
28 bool Search(key_t key)
29 node_t **prev, *curr, *next;
30 return Do_Find(key, &prev,

&curr, &next, true);

31 bool Do_Find(key_t key, node_t
***p_prev, node_t **p_curr,
node_t **p_next, bool srch)

32 node_t **prev, *curr, *next;
33 prev_next = nullptr;
34 prev = &Head;
35 curr = Head;
36 while curr != nullptr do
37 next = curr->Next;
38 if (!isMarked(next))
39 if (curr->Key ≥ key) break;
40 prev = &curr->Next;
41 prev_next = next;

42 curr = getUnmarked(next);

43 if (prev_next && prev_next !=
curr && !srch) // Search(): skip

44 if (!CAS(&prev, prev_next, curr
) goto 33 ;

// Delete prev_next...curr chain

45 *p_curr = curr;
46 *p_prev = prev; *p_next = next;
47 return curr && (curr->Key==key);

Figure 3. Harris’ list with optimistic traversals (w/o SMR).

Thread 2 retires N3, but since Thread 1 never reserves it, N3
is reclaimed causing Thread 1 to fail when accessing it.
Maged M. Michael modified Harris’ approach [20] to ad-

dress its incompatibility with HP: when a thread encounters
a logically deleted node during a traversal, it immediately
attempts to physically remove the node.

Why Michael’s Approach Works. Accessing N2 is safe
since its HP reservation precedes physical deletion. (To suc-
cessfullymake a reservation, HP verifies that the pointer from
N1 to N2 remains intact.) After N2 is physically deleted, it is
retired and placed into the HP limbo list. If we now attempt
to reserve N3, HP erroneously succeeds as the pointer from
N2 to N3 stays intact, unlike the pointer from N1 to N2. Thus,
Michael’s approach ensures that the successor of a marked
node is never traversed: the marked node is unlinked from
the list and the operation is restarted if the unlinking fails.4

While solving theHP problem,Michael’s method increases
the number of CAS operations, which increases thread con-
tention and makes read-only wait-free traversals impossible.

In Figure 3, we present Harris’ list without any SMR. The
original Harris’ list uses −∞ and +∞ sentinel nodes. We en-
code the first (pre-head) sentinel implicitly via &Head (L34);

4Another way to think about it is that if we remove nodes one by one, N3
takes place of N2, i.e., right after N1. N3 will be the first logically deleted
node in the chain when making HP reservation, which is still safe to access.

this removes one sentinel node without changing the seman-
tics: Traversal still starts from Head and CAS acts on link
pointers (node_t**). We keep a pointer to a link in prev so
that CAS can update the predecessor field directly, including
&Head, making the first sentinel unnecessary. Using prev
= &curr->next allows the algorithm to perform CAS(prev,
curr, new) uniformly, whether prev refers to Head or to
an internal node. We use node_t*** only to return the pre-
decessor’s link address (node_t**) to the caller, since CAS
operates on the address of the variable being updated, exactly
as in the original Harris algorithm.
The Insert method inserts a new node into the list. We

slightly diverge from the original version [14] by using an
optimization [18] which enables read-only search operations.
Before inserting a new node, Insert checks if the key of the
to-be-inserted node exists via Do_Find. The new node gets
inserted unless its key is already present in the list. Delete
removes the node from the list. If the key is found in the list,
the node is logically deleted at L21 by marking next, and
then one attempt is made to unlink it from the list at L22.
In Search, the underlying Do_Find operation skips L43-

L44. In Insert and Delete, Do_Find locates the right po-
sition for the key. If a chain of marked nodes is found, the
algorithm attempts to clean it up using CAS at L44. If we
integrate HP without any changes, L37 may crash.

3 Design
3.1 Bird’s-Eye View
The crux of the problem is HP’s inability to properly track
physically deleted nodes in Harris’ list (or tagged edges in
the Natarajan-Mittal tree) while traversing logically deleted
nodes. However, if there were some way to confirm that the
following logically deleted node has not yet been physically
deleted, optimistic traversals would still be feasible.

In Figure 2, N2 is still safe to access because it is not phys-
ically deleted, i.e., N1 still points to N2. Moreover, according
to Figure 3, we always make sure that the node to the left
is not logically deleted and thus never unlink nodes in the
middle of the chain, i.e., we can delete just N2, or both of N2
and N3, but we never delete N3 while keeping N2 in the list.
In other words, we remove a prefix of the chain.
Combining these observations, we gain a crucial insight

that helps solve the issue with HP: It is still safe to access
N3 and the following nodes as long as at every step, i.e.,
after making an HP reservation for the next logically deleted
node, we verify that N1 still points to N2. In other words,
once we reach N2, we declare it to be a “dangerous zone.”
Until we reach the end of the chain of consecutive logically
deleted nodes, we are going to stay in the dangerous zone and
perform additional checks. More specifically, after retrieving
N3’s pointer and creating its HP reservation, we check that
N1 still points to N2. We will continue to perform these
checks at every iteration until we reach the end of the chain.

29

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

N1 N2 N3 N5
Reserved by
[Hp2]

prev_next

prev

Reserved by
[Hp3]

Validate (*prev = prev_next) after reserving N3 (Hp0)

Reserving ‘next’
[Hp0]

N4 N6

Dangerous zone Another dangerous zone

...

Figure 4. SCOT for Harris’ list: validating *prev = prev_next
at every iteration while traversing via the dangerous zone.

If the check fails, we cannot proceed further and need to
restart the search operation from the very beginning.

SCOTmakes several key assumptions: (1) The data struc-
ture supports a deferred deletion of “logically” deleted nodes
and (2) For a logically deleted node to be physically unlinked,
its predecessor on the traversal path must not itself be logi-
cally deleted. While uncommon in trees or lists, unlinking a
node with multiple predecessors requires extra care if some
predecessors are valid while others are logically deleted.

3.2 SCOT for Harris’ List
In Figure 4, we present our approach for Harris’ list. Com-
pared to Michael’s approach, we need an additional hazard
pointer index (Hp3) which protects the first unsafe node, i.e.,
logically deleted node. This extra hazard pointer prevents
the ABA problem, in case the unsafe node gets recycled
while we are traversing the list. By holding this extra hazard
pointer, we can solely rely on pointer comparison. In other
words, Hp3 protects N2 from our example above irrespective
of where we currently are in the chain of logically deleted
nodes. Like in Michael’s approach, we need Hp2, which pro-
tects the prev area. We note that in Harris’ list, it will be the
last safe, i.e., not logically deleted node.

We present the pseudocode of SCOT-augmented Do_Find
in Figure 5. We show a simple version (on the left) and a
version that unrolls the loop for better performance (on the
right). We use protect and dup, discussed in Section 2.2.2. It
is crucial to use dup such that the old HP index has a lower
numerical value than the new HP index (e.g., Hp0 to Hp1).
This allows to avoid a small race window when iterating in
the same (ascending) order of indices in HP’s retire. Specif-
ically, when advancing from next to curr, we copy Hp0 to
Hp1, but we cannot do it the opposite way. This ordering is
critical because duplicating in the reverse direction (Hp1→
Hp0) would create a window where Hp0 temporarily points
to stale data before being safely updated, potentially leading
to unsafe access if a concurrent reclamation occurs. By main-
taining the ascending order (0→1, 1→2, etc.), we ensure that
each pointer remains protected throughout the traversal.

Our version on the left introduces simple changes to Har-
ris’ original list. Specifically, L15 makes sure that the last safe
node still points to the first unsafe node while traversing.
The tricky part is avoiding L13-L14 (copying to Hp3) for

unmarked nodes, which would add a memory barrier ab-
sent in the Harris-Michael approach, potentially increasing

the algorithm’s cost. We resolve this (on the right) by un-
rolling and splitting the loop into two phases: (1) iterating
through the safe zone and (2) iterating through the dangerous
zone. Phase 1 only duplicates (shifts) prev and curr hazard
pointers from curr and next, respectively. This is similar to
the Harris-Michael algorithm. Upon leaving Phase 1, curr
is duplicated (Hp3) in L49. In Phase 2, we no longer dupli-
cate curr into prev (Hp2), which gives us benefit over the
Harris-Michael approach in the dangerous zone.

In the dangerous zone of logically deleted nodes, Figure 5
runs a check in L55 to ensure that the reservation made in
L54 is valid. Once the chain (or its subchain) gets unlinked,
L55 fails, and we restart the operation from the very begin-
ning. Green highlights changes related to SCOT, and pink
highlights changes specific to the dangerous zone traversal.

3.2.1 Recovery Optimization. For simplicity, we have
stated that when validation fails, we restart from the begin-
ning of the list. While this is acceptable, this validation check
is not always critical: the last safe node may simply point
to another node now (e.g., when a new node is inserted or
the chain of logically deleted nodes is already eliminated by
a concurrent thread). In such cases, we simply escape from
the dangerous zone and continue to the new node. We must,
however, ensure that the last safe node is still not logically
deleted. When it is deleted, the last safe node (prev) is in
the dangerous zone itself (though still safe to access due to a
prior reservation), so we go back to the beginning of the list.
In Section 5, Harris’ linked list implements this optimization.

3.2.2 Why Not Change SMR? In Figure 5, we introduced
the SCOT logic directly in Harris’ list rather than SMR.While
it is feasible to extend the HP API, there are major caveats.
For example, Figure 5’s optimized version calls 2x dup out-
side the dangerous zone, and 1x dup in the dangerous zone
(not counting protect calls in both cases). If we attempt
changing SMR, we will end up with the basic version which
needs 3x dup everywhere, not counting protect. An extra
dup induces a cost, not present with Michael’s approach,
which needs 2x dup. Moreover, empirically, we found that
the recovery optimization (Section 3.2.1) is beneficial for Har-
ris’ list. Conversely, in the Natarajan-Mittal tree, the recovery
optimization does not help improve performance for various
key ranges, primarily because of the hierarchical structure of
the tree, i.e., the tree is likely diverging substantially anyway.
Taking all these factors together, it is better to adapt a

given data structure based on its internal characteristics.

3.3 SCOT for the Natarajan-Mittal Tree
In the Natarajan-Mittal BST [24], all actual keys and values
are located in the leaf nodes, while the internal nodes contain
only routing keys used to direct the traversal through the tree.
The Natarajan-Mittal BST incorporates a concept similar to
Harris’ logical deletion through the use of tagging (applied to
edges or sibling nodes) and flagging (applied to leaf nodes).

30

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

1 bool Do_Find(key_t key, node_t
***p_prev, node_t **p_curr,
node_t **p_next, bool srch)

2 node_t **prev, *curr, *next;
3 prev_next = nullptr;
4 prev = &Head;
5 curr = hp.protect(Head, Hp1);
6 while curr != nullptr do
7 next = hp.protect(curr->Next,

Hp0);
8 if (!isMarked(next))
9 if (curr->Key ≥ key)

break;
10 prev = &curr->Next;
11 prev_next = next;

// Copy Hp1[curr] to Hp2
12 hp.dup(Hp1, Hp2);
13 // Copy Hp0[next] to Hp3
14 hp.dup(Hp0, Hp3);

// Dangerous zone: check
// the last safe node (N1) still
// points to 1st unsafe (N2)

15 else if (prev->load() !=
prev_next) goto 3;

16 curr = getUnmarked(next);
// Copy Hp0[next] to Hp1

17 hp.dup(Hp0, Hp1);

// Skip for Search()
18 if (!srch && prev_next &&

prev_next != curr)
19 if (!CAS(&prev, prev_next,

curr) goto 3 ;
20 Do_Retire(prev_next, curr);

21 *p_curr = curr;
22 *p_prev = prev; *p_next = next;
23 return curr && (curr->Key ==

key);

24 void Do_Retire(node_t *from,
node_t *to)

25 do // Retire the deleted chain
26 node_t *n = getUnmarked(

from->Next);
27 smr_retire(from);
28 from = n;
29 while (from != to);

// Hp0 = 0: Next node (next)
// Hp1 = 1: Current node (curr)
// Hp2 = 2: Last safe node (prev)

30 // Hp3 = 3: First unsafe node

31 bool Do_Find(key_t key, node_t
***p_prev, node_t **p_curr,
node_t **p_next, bool srch)

32 node_t **prev, *curr, *next;
33 prev_next = nullptr;
34 prev = &Head;
35 curr = hp.protect(Head, Hp1);
36 next = hp.protect(curr->Next,

Hp0);
37 while true do
38 do
39 if (curr && curr->Key ≥

key) goto 57;
40 prev_next = nullptr;
41 prev = &curr->Next;

// Copy Hp1[curr] to Hp2
42 hp.dup(Hp1, Hp2);
43 curr = getUnmarked(next);
44 if (!curr) goto 60;

// Copy Hp0[next] to Hp1
45 hp.dup(Hp0, Hp1);
46 next = hp.protect(

curr->Next, Hp0);
47 while !isMarked(next);
48 // Copy Hp1[curr] to Hp3
49 prev_next =

hp.dup(Hp1,Hp3);
// Dangerous zone: check
// the last safe node (N1) still
// points to 1st unsafe (N2)

50 do
51 curr = getUnmarked(next);
52 if (!curr) goto 57;

// Copy Hp0[next] to Hp1
53 hp.dup(Hp0, Hp1);
54 next = hp.protect(

curr->Next, Hp0);
55 if (prev->load() !=

prev_next) goto 33;
56 while isMarked(next);

// Skip for Search()
57 if (!srch && prev_next &&

prev_next != curr)
58 if (!CAS(&prev, prev_next,

curr) goto 33;
59 Do_Retire(prev_next, curr);

60 *p_curr = curr;
61 *p_prev = prev; *p_next = next;
62 return curr && (curr->Key ==

key);

Figure 5. SCOT for Harris’ list with HP: showing Do_Find
only (left side: unoptimized, right: with the unrolled loop).

The Natarajan-Mittal BST makes one crucial insight: a
chain of tagged edges can be eliminated with a single CAS
operation. Moreover, for the search operation, the chain of
tagged edges can be just skipped over. This also makes this
tree somewhat faster than Ellen et al. tree, depending on the
exact workload; both trees were previously evaluated in [19],
and the Natarajan-Mittal tree is almost always faster.
In essence, the Natarajan-Mittal BST makes an optimiza-

tion similar to Harris’ linked list – an optimistic traversal
of the chain of tagged edges. While optimistic traversals are

beneficial in terms of performance, they are also fundamen-
tally incompatible with HP and many other robust schemes
for the same reason as Harris’ list is incompatible with HP.
The Natarajan-Mittal BST implements Insert, Delete,

and Search operations, which are similar to those of Harris’
list, except that the tree traversal is typically faster than a lin-
ear search in the list. Search starts at the root and traverses
through internal nodes (by comparing keys) and continues
until reaching the leaf node with the actual key. If the key is
not found in the leaf node, the operation fails. Insert tra-
verses the tree by using a similar, internal Do_Find method.
If the key is found, Insert fails. Otherwise, Insert allocates
a new internal node, which has left and right pointers ini-
tialized to the leaf node that was found as well as to the leaf
node that is about to be inserted. Then the pointer to the old
leaf node is being replaced by CAS to the new internal node.
Delete also traverses the tree by using Do_Find. If the key
is not found, it fails. Otherwise, Delete logically deletes the
leaf node by changing the corresponding edge’s “flag” bit.
Right after this, the sibling of the flagged leaf is “tagged”. Fi-
nally, an internal CleanUp procedure must be called to prune
tagged edge(s), as shown in Figure 6. The successor (internal)
node will be then replaced with the sibling node.

The SCOT solution is largely similar to that of Harris’ list.
Per original terminology [24], the successor node is the node
with last untagged edge which comes from ancestor. Those
can be any distance apart from the parent node, which is an
immediate parent of the leaf node. Tagged edges constitute
the “dangerous zone” (Figure 6), already discussed in the
context of Harris’ list; they will reside between the successor
and the parent. At each step, we verify that the ancestor still
points to the successor as we traverse via the dangerous zone.
In the SCOT version of the Natarajan-Mittal BST, five

hazard pointers are used, each mapping directly to a specific
role in the traversal. Hp0 protects the current child pointer
being followed.Hp1 protects the current leaf candidate.Hp2
protects the parent of the leaf. Hp3 protects the successor
node, which is the first node reachable through an untagged
edge and marks the entrance to the tagged (dangerous) zone.
Hp4 protects the corresponding ancestor node whose child
pointer should continue to reference the successor.

3.4 Wait-Free Traversals
The remaining piece is related to EBR’s original wait-free
traversal guarantees. With our approach, optimistic traver-
sals may need to occasionally restart the search operation
from the beginning if, due to overlapping modifications, the
state of the data structure diverges significantly and can-
not be recovered locally. This guarantees lock-free but not
wait-free progress. This limitation is very similar to that
of HP++’s existing solution which also does not support
wait-free optimistic traversals due to potential restarts.

However, it is not hard to design an approach which brings
wait-free traversals back to HP and other robust schemes

31

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

G

A

B

C

D

E
F

...

...

Ancestor

Successor

Parent

H... Leaf

B

A

E

...

...

H...

Normal (unmarked) edges

Flagged edges (to leaves)

Tagged edges (to siblings)

CleanUp():
Delete tagged edges

Dangerous zone: need
to check that Ancestor
still points to Successor
at every step

Root

Figure 6. Natarajan-Mittal Tree: Tagged and Flagged Edges.

without resorting to a full-blown wait-free data structure.
(We evaluate Harris’ list in Section 5 using this approach.)

Our idea is based on a custom fast-path-slow-path method
for Search. On every iteration, Insert and Delete check if
any searching thread needs help (by running Help_Threads).
If Help_Threads returns true, Insert or Delete will pro-
ceed with the Slow_Search slow-path procedure (see below),
which is executed prior to the actual insertion or removal.

Figure 7 shows pseudocode. The original Do_Findmethod
is still used as is for Insert and Delete because wait-free
guarantees are only provided for traversals. The Search
operation will run the original Do_Find for a few iterations
(fast path), after which it will call Request_Help to indicate
that the thread needs assistance by other threads, via a per-
thread record entry (thrdrec_t). Request_Help initializes
the search key (L28) and then updates helpTag (L30), so that
other threads are aware that the thread expects help.
On input, helpTag contains the current slow-path cycle

number; this is needed to prevent any belated updates by
helpers intended for past cycles. On output, the same variable,
helpTag, will contain the result of the search operation. To
differentiate inputs and outputs, we reserve one bit (IsInput),
whereas Value represents the actual input tag or output.

The output does not keep track of tags because it is only
used by the helpee which is aware of its slow-path cycle. Our
approach is specifically tailored for traversals; it avoids non-
standard instructions (only a regular CAS) and complexity
related to dynamically-allocated descriptors [32, 33].
Both helpers and the helpee run the same Slow_Search

operation. On every iteration, it checks (L34) whether any
thread has already produced an output (L37), or whether the
slow-path input tag has changed since the helper began (L36).
Slow_Search’s return value is only used by the helpee itself.
Since the input tag can only be changed by the helpee, the
return value in L36 is irrelevant: The L36 condition applies
only to helpers, who ignore Slow_Search’s return value.

4 Correctness
We analyze the SCOT technique to establish two core prop-
erties: (1) Safety: no thread accesses previously reclaimed

1 struct thrdrec_t {
// === Private Fields ===

2 int nextCheck; // = DELAY
3 int nextTid; // = 0 (Thread ID)
4 uint localTag; // = 0 (Slowpath #)
5 // === Shared Fields ===
6 key_t helpKey; // Key (Input)
7 // One bit (.IsInput) is reserved to
8 // differentiate Input/Output
9 uint helpTag; // = {.IsInput = 0}

10 }; // Tag (Input) or Result (Output)
11 thrdrec_t WF[MAX_THREADS];
12 bool Help_Threads(key_t *p_key,

uint *p_tag, int *p_tid)
13 if (--WF[TID].nextCheck != 0)
14 return False;

15 WF[TID].nextCheck = DELAY;
16 currTid = WF[TID].nextTid;
17 WF[TID].nextTid = (currTid + 1)

% MAX_THREADS;
18 if (currTid == TID)
19 return False;

20 tag=WF[currTid].helpTag.load();
21 if (!tag.IsInput) return False;
22 key=WF[currTid].helpKey.load();
23 if (WF[currTid].helpTag.load()

!= tag) return False;
24 *p_key = key; *p_tid = currTid;
25 *p_tag = tag;
26 return True;

27 uint Request_Help(key_t key)
28 WF[TID].helpKey.store(key);
29 tag = WF[TID].localTag;
30 WF[TID].helpTag.store({

.Value = tag, .IsInput = 1});
31 WF[TID].localTag = tag + 1;
32 return { tag, 1 }; // Input

// Note: For the current thread
// itself (helpee), helpTid = TID

33 bool Slow_Search(key_t key,
uint tag, int helpTid)
// Like Fig. 5’s Do_Find, but
// every iteration (L39, L51)
// checks if result is available:

34 r=WF[helpTid].helpTag.load();
35 if (r != tag)

// Return value is irrelevant
// for a different input tag

36 if (r.IsInput) return False;
// DONE: output value is

37 return r.Value; // available

38 ...
39 ...

// If the key has been found
40 ret = True/False;

// This thread has found the
// result itself => notify others

41 WF[helpTid].helpTag.CAS(tag,
{ .Value = ret, .IsInput = 0});

42 return ret;

Figure 7. Wait-Free Traversals with SCOT.

memory, and (2) Lock-Freedom: the system guarantees
global progress. We also analyze SCOT’s wait-free traversal
extension (Figure 7). We prove that the Search(𝑘𝑒𝑦) oper-
ation terminates in a finite number of steps for all threads
(wait-freedom) while preserving safety and linearizability.

Without loss of generality, for simplicity, we assume a
sequentially consistent memory model in our arguments.
Also, Theorems 2 and 3 consider only Harris’ list, but
similar arguments apply to the Natarajan-Mittal tree as well.

4.1 Memory Bounds
Theorem 1 (BoundedMemory Overhead). For a SCOT-based
implementation of Harris’ list and the Natarajan-Mittal tree,
the total memory usage with HP is 𝑂 (|𝐷 | + 𝑁), where |𝐷 | is
the number of live nodes and 𝑁 is the number of threads.

Proof. Each thread uses a fixed number 𝐻 of hazard-pointer
slots (𝐻=4 for Harris’ list and 𝐻=5 for the Natarajan-Mittal
tree), so at most 𝐻 · 𝑁 nodes are reserved at any time. Let 𝑅
be a constant defining a limbo-list scanning threshold (e.g.,
128). Removed nodes are retired and placed into a per-thread
limbo list, and reclamation is triggered only after a thread
has retired 𝑅 nodes. Between reclamation cycles, each thread
can accumulate at most 𝑅 unreclaimed nodes, giving at most
𝑁 · 𝑅 additional retired nodes system-wide.

During limbo-list scanning, any retired node not protected
by a hazard pointer is freed; at most 𝐻 · 𝑁 previously re-
tired nodes remain unreclaimed, and 𝑁 · 𝑅 additional nodes

32

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

can still be in the limbo list before scanning completes. The
total number of unreclaimed nodes at any point of time is
𝐻𝑁 + 𝑁𝑅 = 𝑂 (𝑁). Including |𝐷 | reachable nodes, the total
memory bound becomes 𝑂 (|𝐷 | + 𝑁). □

4.2 Safe Optimistic Traversal
Theorem 2 (HP Compatibility & Traversal Safety). When a
thread 𝑇 traverses a dangerous zone consisting of the marked
sequence ⟨𝑁𝑘 , 𝑁𝑘+1, . . . , 𝑁ℓ⟩, we assign hazard pointers so that
HP(T,2) protects the last safe predecessor 𝑁𝑘−1, HP(T,3) pro-
tects the head of the marked region (the first unsafe node 𝑁𝑘),
and HP(T,1) protects the current node 𝑁𝑖 during traversal.
Under this assignment, 𝑇 never dereferences a reclaimed node.

Proof. When𝑇 detects the marked region, it protects the last
unmarked predecessor 𝑁𝑘−1 and the first marked node 𝑁𝑘 ,
thus making sure that both of them will not be reclaimed. As
𝑇 traverses the marked chain, each node 𝑁𝑖 and its successor
are hazard-protected, and 𝑇 consistently validates that the
predecessor link in 𝑁𝑘−1 still points to 𝑁𝑘 . The risk of unsafe
memory accesses exist only after physical unlinking. Any
physical unlinking requires the predecessor node to remain
unmarked (Figure 3, L22). Thus, only 𝑁𝑘−1’s link can change,
irrespective of the actual removal operation among nodes
in the marked sequence. Due to being reserved, 𝑁𝑘 cannot
get recycled, and when 𝑁𝑘−1’s link changes, it points to
some other node, causing validation to fail. Traversal restarts
(Figure 5, L15 and L55) before reaching anything that has
already been reclaimed in the marked sequence. □

4.3 Lock-Freedom
Theorem 3 (Lock-Free Updates). In the SCOT-based design,
all update operations (Insert and Remove) are lock-free.

Proof. Each update proceeds through repeated attempts (Fig-
ure 3, L11 and L19). Assuming a finite list length, in each
attempt, SCOT runs Do_Find, which consists of a bounded
number of local steps to reach the target location (reads
and validation). A restart (Figure 5, L15 and L55) occurs only
when detecting a changed link. The link changes only during
another successful update: Insert (Figure 3, L15), Delete
(Figure 3, L21), or Do_Find (Figure 5, L19 and L58).
There is one attempt in Insert (L15) or Delete (L21) to

change the link after Do_Find; a failure means that another
thread has changed the same location first, indicating global
progress. If the current thread indefinitely fails, every failure
is caused by a successful update by another thread.While any
thread can starve indefinitely in Insert, Delete, or Do_Find,
there is always at least one thread that makes progress. □

4.4 Wait-Free Traversals
Lemma 4 (Finite Wait Time). Each thread that called Re-
quest_Help is helped by at least one thread after at most
𝑁 ·DELAY update operations, where𝑁 is the number of threads.

Proof. Insert and Delete call Help_Threads every itera-
tion. They assist exactly one thread after DELAY calls of
Help_Threads. (The nextCheck variable in Figure 7, L13
amortizes checks.) Threads are being served in a circular
fashion (L17). Since the number of threads is 𝑁 , the thread
under consideration will be served after 𝑁 calls amortized
by the 𝐷𝐸𝐿𝐴𝑌 factor. □

Lemma 5 (Uniqueness). For any slow-path tag 𝑡 , only one
thread writes an output; no late helper replaces a newer value.

Proof. A request is posted by Reqest_Help, which writes
helpTag ← ⟨𝑣, In⟩ for a per-thread version 𝑣 and returns
⟨𝑣, In⟩ to the requester. A helper publishes a result only via
the atomic transition at L41: CAS

(
helpTag, ⟨𝑣, In⟩, ⟨𝑟,Out⟩

)
.

Since CAS compares against the exact input tag ⟨𝑣, In⟩, at
most one helper succeeds for the same version 𝑣 . After that,
helpTag changes to ⟨𝑟,Out⟩, so any remaining helper observ-
ing ⟨...,Out⟩ will fail the CAS. Future requests use strictly
increasing version numbers (𝑣 ′ > 𝑣), ensuring that stale
helpers fail the CAS on helpTag, which is now ⟨𝑣 ′, In⟩. □

Lemma 6 (Bounded Slow Path). Slow_Search terminates
after at most 𝑂 (𝑁 2 · 𝐷𝐸𝐿𝐴𝑌 + depth(𝐿)) operations, where
depth(𝐿) is the maximum depth of the list.

Proof. Slow_Search may need to restart due to a structural
change, which implies that another thread completes an
update operation. On each iteration, Slow_Search re-reads
the requester’s helpTag (L34) to detect completion by another
thread, i.e., when another thread completes CAS in L41, at
which point the loop terminates immediately.

Per Lemma 4, at least one thread assists the helpee after
𝑁 · 𝐷𝐸𝐿𝐴𝑌 update operations. This thread may also get
stuck in its Slow_Search. Consequently, another thread
after 𝑁 · 𝐷𝐸𝐿𝐴𝑌 operations will join. After𝑂 (𝑁 2 · 𝐷𝐸𝐿𝐴𝑌)
operations, all threads will be in Slow_Search, which will
be then unobstructed and conclude after depth(𝐿)) steps. □

Theorem 7 (Wait-Free Search). Search(key) is wait-free.

Proof. Search executes the fast path for a finite number
of restarts 𝑀 , which bounds its execution time to 𝑂 (𝑀 ·
𝑑𝑒𝑝𝑡ℎ(𝐿)). Subsequently, it calls Reqest_Help and then
switches to Slow_Search, which is bounded per Lemma 6.

□

Theorem 8 (Linearizability). Search(key) is linearizable.

Proof. Both the fast and slow paths preserve the same val-
idation and update semantics as the underlying lock-free
data structure. A successful search linearizes at the read
that observes a matching key under a valid link predicate,
and an unsuccessful search linearizes at the final validated
predecessor–successor relation. When help is provided, the
helper executes exactly the same steps in the same order. □

33

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

5 Evaluation
Our benchmark reuses and substantially extends the test
harness from [28], which already implements the Harris-
Michael list (HMList) and a few SMR schemes: EBR, HP, and
HE. We implemented Harris’ list (HList) and the Natarajan-
Mittal tree (NMTree) from scratch by carefully considering
all known optimizations.We also added IBR [34] andHyaline-
1S [26] SMR schemes into the benchmark. We evaluated the
original HP version [21] without extra optimizations. We
also implemented and evaluated an optimized HP version
(HPopt), which captures a local snapshot of shared data prior
to the limbo list scanning [26]. HP vs. HPopt shows a sub-
stantial difference in some tests. Finally, we implemented
a similar optimization for HE and IBR (not applicable to
Hyaline-1S), as these schemes also benefit from it.

We did not implement HP++ [19] due to its substantial API
differences (i.e., lack of an easy integration). HP++ is already
known to perform mostly worse than HP for the same data
structure [19], i.e., HP++ shows some performance benefits
only when comparing different data structures (the Harris-
Michael HP list vs. Harris’ HP++ list). However, this compar-
ison is largely irrelevant as we are now able to implement
Harris’ list and other data structures in HP directly.
We evaluate HMList, HList, and NMTree under different

reclamation strategies: NR (no reclamation, leak memory),
EBR, HP, HPopt, IBR, HE, and HLN (Hyaline-1S). For HList
and NMTree, we use SCOTwhen evaluating them for all SMR
schemes except NR/EBR. For HList, we present a versionwith
wait-free traversals (Section 3.4); the lock-free version yields
almost identical results. These algorithms were previously
infeasible for HP/HPopt/IBR/HE/Hyaline-1S [3, 19].
We calibrated all SMR schemes to maximize throughput

while minimizing not-yet-reclaimed objects. We found that
amortizing limbo list scans at a frequency of one scan per
128 retire calls works well for EBR, HP, HPopt, HE, IBR, and
Hyaline-1S. Also, for EBR, IBR, HE, and Hyaline-1S, we set
the epoch increment frequency to 12 times the thread count.

We run experiments on Ubuntu 22.04.5 LTS using an AMD
EPYC 9754 (Zen 4) system with 128 physical cores (256 hard-
ware threads w/ hyperthreading enabled), 384 GiB of RAM,
and a maximum clock speed of 3.10 GHz. The benchmark is
written in C++ and compiled using Clang++ 14.0.0 with -O3
optimizations because its compiled code tends to perform
slightly better than the code generated by Ubuntu’s (default)
GCC 11.4.0. For memory allocation, we use Microsoft’s
mimalloc [22] since it scales much better in multi-threaded
code compared to glibc’s stock malloc. (To stress test algo-
rithms, we also ran all tests with glibc’s stock malloc.)
We note that recent AMD EPYC architectures, including

the evaluation server, show significantly improvedHP perfor-
mance due to reduced memory barrier overheads, the main
prior bottleneck. AMD Zen 3 already introduced key cache-
system optimizations that reduced these overheads, and

Zen 4 further advances the architecture with improved cache-
line sharing and enhanced multithreaded performance [23].
Thus, our HP results, especially HPopt, are better than
usual and often close to EBR.

Wemeasure both throughput andmemory overhead.Mem-
ory overhead represents the number of not-yet-reclaimed
objects, which are nodes that remain in an unreclaimed state
due to the use of SMR. To calculate memory waste, we period-
ically record the average number of not-yet-reclaimed nodes
in every thread.We skip memory overheads for Hyaline-1S due
to its global nature of reclamation, making it hard to calculate
the number of unreclaimed objects locally per thread using this
low-overhead mechanism which works for other SMR schemes.

Each benchmark begins with prefilling the data structure
with unique keys using 50% of the specified key range. We
conduct 5 independent runs, each lasting 10 seconds. The
median of all runs is used as the final measure for both
throughput and memory overhead. (Across all experiments,
the relative standard deviation remains mostly below 1%.)
Our experiments use 1, 16, 32, 64, 128, 256, and 384 threads to
evaluate performance for different levels of concurrency (384
threads represent oversubscription). Additionally, we test
varying key ranges based on the data structure. For list, we
use key ranges of 512 and 10,000. For tree, we use key ranges
of 128, 100,000, and 50,000,000. We present results for a com-
monworkload, 50% read - 50%write (mixed reads and writes).
We also measured 90% read - 10% write (read-dominated)
and 50% insert - 50% delete (write-only) workloads, but we
omit them as they exhibit largely similar trends.
All throughput figures include a special NR (no reclama-

tion) baseline which simply leaks memory and demonstrates
the “upper bound” for performance. In some cases, EBR and
other SMRs can outperform this baseline, e.g., when the cost
of reclaiming memory is much lower than that of performing
fresh allocations. We also noticed that NR may outperform
SMRs, including EBR, under oversubscribed scenarios.

In Figure 8, we present throughput results for the Harris-
Michael list and Harris’ list under different SMR schemes
in a workload consisting of 50% read and 50% write opera-
tions. We observe that Harris’ list consistently outperforms
the Harris-Michael list for lower key ranges (512). As the
key range increases to 10,000, the performance gap narrows,
but Harris’ list still maintains its throughput advantage. IBR,
Hyaline-1S, HE, and HPopt show excellent performance on
Harris’ list with the SCOT traversal, often approaching that
of EBR. The original HP scheme demonstrates lower through-
put than its optimized counterpart (HPopt) in all tests.

In Figure 10, we measure the memory overhead by show-
ing the number of retired but not-yet-reclaimed nodes for
Harris-Michael and Harris’ lists. As expected, both HP and
HPopt consistently maintain the smallest number of such
unreclaimed objects compared to all other SMR schemes.

Figure 9 presents the throughput of the Natarajan-Mittal
tree under a 50% read and 50%writeworkload. For the smaller

34

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

(a) Key Range = 512 (b) Key Range = 10,000

Figure 8. Linked List Throughput (50% Read - 50% Write): higher is better. (Skipped 384 threads; close to 256.)

(a) Key Range = 128 (b) Key Range = 100,000

Figure 9. NMTree Throughput (50% Read - 50% Write): higher is better.

key range (128), the baseline performance (without recla-
mation) is comparable to that of the various reclamation
schemes, with only a small performance gap observed. In
contrast, Figure 9b highlights the scalability of the tree at
higher key ranges, where the Natarajan-Mittal tree achieves
up to 240million operations per second at 256 threads us-
ing the EBR scheme. Hyaline-1S also performs competitively,
reaching 210 million operations per second, making it
the closest in performance to EBR in this configuration.

Figure 11 presents the memory overhead of the Natarajan-
Mittal tree under a 50% read and 50% write workload. In both
Figure 11a and Figure 11b, we observe consistent trends in
memory usage. HP and HPopt maintain the lowest number
of nodes in the limbo state, which we attribute to its strict
and conservative reclamation guarantees. In contrast, EBR
exhibits the highest memory overhead, reflecting its more
relaxed and delayed reclamation behavior.
We additionally evaluate the Natarajan-Mittal tree on a

large key range of 50 million keys, so that the tree does not fit
in the CPU cache. Figure 12a shows that the overall through-
put decreases relative to smaller key ranges as expected due
to the increase in the traversal depth and reduced cache
locality. However, relative trends of SMR schemes remain
consistent with the smaller-key experiments. In particular,

Table 2. Restart Statistics for HP, Key Range = 10,000.
The Harris-Michael List Harris’ List

Threads 1 64 256 1 64 256

Restarts (per 10 sec) 0 637938 3373950 0 6 59
Ops/sec 74992 1925414 4119613 78290 2025492 4424534

0% 3.31% 8.19% ≈ 0%

IBR and Hyaline-1S remain highly competitive, often ap-
proaching the throughput of EBR even at high thread counts.
Figure 12b reports the average number of not-yet-reclaimed
objects. At the highest thread count (384), EBR exhibits the
largest number of unreclaimed objects. In contrast, HP and
HPoptmaintain the lowest memory footprint, reflecting their
strict and robust reclamation behavior.
Finally, in Table 2, we provide empirical restart behavior

for the Harris-Michael list and Harris’ list with HP for the
scenario in Figure 8b. We observe that for the Harris-Michael
list, the restart rate increases from 0% at 1 thread to 8.19% at
256 threads. In contrast, Harris’ list exhibits ≈ 0% restart rate
across any thread count. Since restarts are expensive and
require re-traversing the list from the head, they incur sub-
stantial overheads. This, combined with a reduced number
of CAS during physical unlinking, explains why Harris’ list
consistently outperforms the Harris-Michael list in Figure 8.

35

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

(a) Key Range = 512 (b) Key Range = 10,000

Figure 10. Linked List Average Number of Not-Yet-Reclaimed Objects (50% Read - 50% Write): lower is better.

(a) Key Range = 128 (b) Key Range = 100,000

Figure 11. NMTree Average Number of Not-Yet-Reclaimed Objects (50% Read - 50% Write): lower is better.

(a) Throughput (higher is better) (b) Not-Yet-Reclaimed Objects (lower is better)

Figure 12. NMTree (50% Read - 50% Write), Key Range = 50,000,000 (not fitting in L1/L2/L3 cache).

6 Related Work
6.1 Non-Blocking SMR
The ERA theorem [30] demonstrates that at most two out
of three properties – (A) robustness, (B) easy integration,
and (C) wide applicability – can be achieved simultane-
ously. Moreover, strong applicability currently seems to be
available only with SMR schemes that implement some kind
of quiescence, similar to EBR. However, quiescence periods
inevitably lead to potentially unbounded memory usage.

DEBRA+ [8], QSense [6], ThreadScan [2], ForkScan [1],
NBR [31], propose a solution to EBR’s robustness (A) prob-
lem. However, they all need special OS support, such as
scheduler interaction or signal delivery, which requires locks
in typical OSs. These schemes satisfy (A) and (C) proper-
ties but not (B), which is essential to the strict non-blocking
progress. Other schemes that satisfy (A) and (C), e.g., VBR [29],
need non-trivial roll-back mechanisms, which are hard to
generalize under a uniform library API.

36

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

There were also recent attempts to use automatic garbage
collection techniques. Generally speaking, garbage collection
is subject to the same trade-offs and limitations, discussed
above. FreeAccess [9] addresses the problem with (C) and op-
timistic traversals but forgoes (B) by requiring to divide code
into separate read and write phases. OrcGC [10] is another
lock-free garbage collector. OrcGC requires mechanisms sim-
ilar to smart pointers either in the compiler or the language
itself; it can also be slower than HP in certain tests.
Other SMR schemes such as interval-based reclamation

(IBR) [34], hazard eras (HE) [28], wait-free eras (WFE) [25],
Hyaline [26], and Crystalline [27] provide an HP-like inter-
face; they still lack the wide-applicability property (C) but
are often faster than HP. SCOT’s method to mitigate the
problem with (C) is suitable to these SMR schemes as well.

Drop the Anchor (DTA) [7] is a lightweight memory recla-
mation technique designed specifically for Harris-style singly
linked lists. DTA’s idea is to reduce the high per-pointer cost
of hazard pointers by amortizing protection over multiple
node accesses. Instead of protecting every node, DTA period-
ically records an anchor every few traversed nodes and relies
on timestamps, freezing, and a recovery procedure to ensure
safety even in the presence of thread failures. By reducing
memory barriers and CAS operations, DTA achieves signif-
icantly better performance for traversal-heavy workloads.
However, its design is closely tied to the linear traversal
pattern of linked lists and depends on the ability to freeze
and reconstruct contiguous sublists during recovery, mak-
ing it difficult to adapt to data structures with branching or
non-linear access patterns such as trees, skip lists, or hash
maps. In contrast, SCOT enables optimistic traversal with the
existing robust SMR schemes by modifying the data struc-
ture itself to safely validate traversal paths. Thus, while DTA
optimizes the HPmechanism for a specific purpose, SCOT ex-
pands the applicability of general-purpose SMRs by adapting
high-performance non-blocking data structures to remain
compatible, preserving both performance and correctness
without requiring SMR-specific recovery logic.

Pass-the-buck [16, 17] uses a similar model as HP. Beware
& Cleanup (B&C) [13] enhances HP with a limited form of
reference counting (RC) for retired records. The key insight
is to free a record only when no other records point to it (RC
is zero) and no hazard pointer protects it. While potentially
addressing optimistic traversals, B&C’s retirement algorithm
is complex and incurs higher overhead than HP or RC [8].

6.2 Non-Blocking Data Structures
Timothy L. Harris [14]was the first to present a practical lock-
free linked list. Maurice Herlihy and Nir Shavit showed [18]
that read-only optimistic search operations are feasible with
Harris’ list. Unfortunately, Harris’ list is incompatible with
HP [3, 9, 10, 19, 26, 27]. Maged M. Michael proposed [20]
disabling optimistic traversals by unlinking logically deleted
nodes one by one, making it feasible to use the algorithm

with HP. SCOT enables support for Harris’ original list with
HP, HE, IBR, and Hyaline, while using optimistic traversals.

A skip list provides probabilistic logarithmic-time search,
insertion, and deletion. Lock-free skip lists [12, 18] resem-
ble Harris and Harris-Michael lists but consist of multiple
sublists. However, challenges related to logical deletion and
optimistic traversals are identical.

Hash maps store and retrieve key-value pairs in constant
time. Lock-free hash map [20] is an array of lists and can be
based on either Harris’ or the Harris-Michael approach.
Binary search trees are also commonly used for efficient

search, insertion, and deletion operations. Ellen at al. tree [11]
implements one such approach which is compatible with HP.
However, the Natarajan-Mittal tree [24] is significantly faster
(around 43% according to [19]) due to its ability to remove
multiple concurrently tagged edges in one pass. Prior to our
work, as pointed out in [3, 19], the Natarajan-Mittal tree was
incompatible with HP, IBR, and other similar schemes.

7 Conclusion
We introduced safe concurrent optimistic traversals (SCOT),
a new method which enables support for data structures that
are incompatible with HP, IBR, HE, Hyaline-1S, and similar
SMRs that lack the wide applicability support. Despite prior
beliefs [19] of incompatibility of the Natarajan-Mittal tree
and Harris’ list with HP, we have demonstrated that not only
they are feasible with HP, IBR, HE, and Hyaline-1S, but they
can also retain performance benefits when comparing to
equivalent data structures without optimistic traversals. We
have also presented a mechanism which returns wait-free
traversals to SCOT-based data structures, further eliminating
the gap with EBR-based implementations.
While SCOT does not apply universally, a wide range of

data structures can now be safely implemented with the
above-mentioned schemes. EBR can still be a good choice
for API simplicity, but SCOT enables an alternative with
good performance and compatibility when strong robustness
is required. We hope our work inspires further research
and reevaluation of remaining challenges in SMR, as limited
applicability can be addressed in other ways.

Acknowledgements
A preliminary version of SCOT previously appeared as a
brief announcement at SPAA ’25 [5].

We would like to thank the anonymous reviewers and our
shepherd Trevor Brown for their insightful comments and
suggestions, which helped greatly improve this paper.

Data-Availability Statement
The benchmark and data supporting this paper are avail-
able on Zenodo [4]. The most up-to-date source code is also
available at https://github.com/rusnikola/scot.

37

https://github.com/rusnikola/scot

Fixing Non-blocking Data Structures for Better Compatibility PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia

A Artifact Description
A.1 Abstract
Our artifact includes: (1) a Linux VM image deployable with
VirtualBox; (2) source code of the benchmark, along with
all tested data structures and SMR schemes; (3) scripts for
running tests and generating charts. We include detailed
instructions for replicating the results in README.txt.

A.2 Artifact check-list (meta-information)
• Algorithm: New algorithm, SCOT.
• Program:BenchmarkwithHList, HMList, andNMTree.
• Compilation: clang++ 14.0.0 with -O3 optimizations.
• Binary: Linux ELF (x86_64) executables.
• Run-time environment: Ubuntu 22.04.5 LTS.
• Execution: The execution time is passed through a
program parameter.
• Output: Section 5 plots produced as PDF/SVG files.
• Experiments: Scripts run all presented test cases.
• Workflow frameworks used?: No.
• Publicly available?: Yes.
• Code licenses: 2-BSD and 3-BSD.

A.3 Dependencies
A.3.1 Hardware dependencies. Please ensure that your
system (VM) is equipped with a sufficient number of CPUs
and ample memory. Our 128-core machine (256 hardware
threads) has 384 GiB of physical RAM, and we recommend at
least 128 GiB, especially if running tests for the NR baseline.

A.3.2 Software dependencies. In our setup with Ubuntu,
the following packages were installed: git, build-essential,
clang, libstdc++-11-dev, libmimalloc-dev, unzip, zip, python3-
pip, libcairo2. We also installed the following python3 pack-
ages via pip: numpy, matplotlib, cairosvg, pandas.

A.4 Compilation
cd ./scot/SCOT
make

A.5 Experiment workflow
• Compile the benchmark.
• Run tests. We provide source.sh which runs all tests
presented in the paper.
• For individual tests, you can also invoke tests directly.
For example, for a lock-free list test with EBR (2 sec-
onds, 4 threads):
./bench listlf 2 512 1 50 25 25 EBR 4

(You can see all options by running ./bench.)
• Plot the results. See below.

A.6 Evaluation
HList and NMTree for HP/HPO/HE/IBR/Hyaline are new im-
plementations that use the SCOT technique; they constitute

the main contribution of the paper (both LF andWF versions
for HList). Conversely, HMList, which is unlike HList was
already feasible for all SMR schemes, and EBR/NR schemes
(across all data structures) represent existing baselines.

Running all tests:
For full-blown tests (can take up to 10 hours and require a

lot of RAM, e.g., at least 128 GiB is recommended), execute:
cd ./scot/Scripts
nohup ./source.sh &

For lightweight tests (which run 2 hours and consume less
memory), you can skip the NR baseline:
cd ./scot/Scripts
nohup ./source_lightweight.sh &

Output results will be located in ./scot/Data for the cor-
responding data structure: listlf (lock-free list), listwf (list
with wait-free traversals), tree (Natarajan-Mittal tree). Also,
./scot/run_XXX directory will contain intermediate files. Fi-
nally, ./scot/Scripts/run.log is the standard output (log) file.

Drawing PDF plots:
cd ./scot/Scripts
python3 generate_charts.py

This script scans ./scot/Data/*, processes all list (lock-free
and wait-free versions) and tree benchmark outputs, and pro-
duces the corresponding SVG and PDF charts in the *_charts
subdirectories. By default, this command uses all available
thread counts present in the result files, but the ‘paper’ pa-
rameter enables paper-optimized settings.

References
[1] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.

2017. Forkscan: Conservative Memory Reclamation for Modern Op-
erating Systems. In Proceedings of the 12th European Conference on
Computer Systems (Belgrade, Serbia) (EuroSys ’17). 483–498. doi:10.
1145/3064176.3064214

[2] DanAlistarh,WilliamM. Leiserson, AlexanderMatveev, andNir Shavit.
2015. ThreadScan: Automatic and Scalable Memory Reclamation. In
Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures (Portland, Oregon, USA) (SPAA ’15). 123–132. doi:10.
1145/2755573.2755600

[3] Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Con-
current deferred reference counting with constant-time overhead. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2021). ACM,
New York, NY, USA, 526–541. doi:10.1145/3453483.3454060

[4] MdAmit HasanArovi and RuslanNikolaev. 2025. Artifact for PPoPP’26.
https://doi.org/10.5281/zenodo.17707898

[5] MdAmit HasanArovi and Ruslan Nikolaev. 2025. Brief Announcement:
SCOT: Fix non-blocking data structures, not memory reclamation. In
Proceedings of the 37th ACM Symposium on Parallelism in Algorithms
and Architectures (Portland, OR, USA) (SPAA ’25). ACM, New York,
NY, USA, 603–607. doi:10.1145/3694906.3743348

[6] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
2016. Fast and Robust Memory Reclamation for Concurrent Data
Structures. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures (Pacific Grove, California, USA) (SPAA
’16). ACM, New York, NY, USA, 349–359. http://doi.acm.org/10.1145/
2935764.2935790

38

https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1145/3453483.3454060
https://doi.org/10.5281/zenodo.17707898
https://doi.org/10.1145/3694906.3743348
http://doi.acm.org/10.1145/2935764.2935790
http://doi.acm.org/10.1145/2935764.2935790

PPoPP ’26, January 31 – February 4, 2026, Sydney, NSW, Australia Md Amit Hasan Arovi and Ruslan Nikolaev

[7] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the
anchor: lightweight memory management for non-blocking data struc-
tures. In Proceedings of the 25th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (Montréal, Québec, Canada) (SPAA
’13). ACM, New York, NY, USA, 33–42. doi:10.1145/2486159.2486184

[8] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free
Data Structures: There Has to Be a Better Way. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing
(Donostia-San Sebastián, Spain) (PODC ’15). 261–270. doi:10.1145/
2767386.2767436

[9] Nachshon Cohen. 2018. Every data structure deserves lock-free mem-
ory reclamation. Proc. ACM Program. Lang. 2, OOPSLA, Article 143
(oct 2018), 24 pages. doi:10.1145/3276513

[10] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2021. OrcGC:
Automatic Lock-Free Memory Reclamation. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’21). ACM, 205–218.

[11] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking binary search trees. In Proceedings of the 29th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(Zurich, Switzerland) (PODC ’10). ACM, New York, NY, USA, 131–140.
doi:10.1145/1835698.1835736

[12] Keir Fraser. 2004. Practical lock-freedom. Technical Report. Univ.
of Cambridge, Computer Laboratory. http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-579.pdf

[13] Anders Gidenstam,Marina Papatriantafilou, Hakan Sundell, and Philip-
pas Tsigas. 2009. Efficient and Reliable Lock-FreeMemory Reclamation
Based on Reference Counting. IEEE Trans. Parallel Distrib. Syst. 20, 8
(Aug. 2009), 1173–1187. doi:10.1109/TPDS.2008.167

[14] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-Lists. In Proceedings of the 15th International Conference on
Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg,
300–314.

[15] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and
Jonathan Walpole. 2007. Performance of memory reclamation for
lockless synchronization. J. Parallel and Distrib. Comput. 67, 12 (2007),
1270 – 1285. doi:10.1016/j.jpdc.2007.04.010

[16] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.
Nonblocking memory management support for dynamic-sized data
structures. ACM Trans. Comput. Syst. 23, 2 (May 2005), 146–196. doi:10.
1145/1062247.1062249

[17] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Re-
peat Offender Problem: A Mechanism for Supporting Dynamic-Sized,
Lock-Free Data Structures. In Proceedings of the 16th International Con-
ference on Distributed Computing (DISC ’02). Springer-Verlag, Berlin,
Heidelberg, 339–353.

[18] Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Pro-
gramming, Revised Reprint (1st ed.). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[19] Jaehwang Jung, Janggun Lee, Jeonghyeon Kim, and Jeehoon Kang.
2023. Applying Hazard Pointers to More Concurrent Data Structures.
In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms
and Architectures (Orlando, FL, USA) (SPAA ’23). ACM, New York, NY,
USA, 213–226. doi:10.1145/3558481.3591102

[20] Maged M. Michael. 2002. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures (Winnipeg,
Manitoba, Canada) (SPAA ’02). ACM, New York, NY, USA, 73–82.
doi:10.1145/564870.564881

[21] Maged M. Michael. 2004. Hazard pointers: safe memory reclamation
for lock-free objects. IEEE Transactions on Parallel and Distributed
Systems 15, 6 (June 2004), 491–504.

[22] Microsoft. 2025. Mimalloc allocator. https://github.com/microsoft/
mimalloc.

[23] Hassan Mujtaba. 2022. AMD EPYC 9654 Genoa 96 Core CPU
Benchmarked In Cache & Memory Benchmark - Over 2x Inter-Cache
Bandwidth Versus Milan-X & Up To 30 TB/s L1 Transfer Rates.
https://wccftech.com/amd-epyc-9654-96-core-genoa-cpu-tears-
apart-milan-x-sapphire-rapids-cache-latency-benchmarks-up-to-
30-tbps-over-2x-performance-increase.

[24] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-
free binary search trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando,
Florida, USA) (PPoPP ’14). ACM, New York, NY, USA, 317–328. doi:10.
1145/2555243.2555256

[25] Ruslan Nikolaev and Binoy Ravindran. 2020. Universal Wait-Free
Memory Reclamation. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (San
Diego, California) (PPoPP ’20). ACM, New York, NY, USA, 130–143.
doi:10.1145/3332466.3374540

[26] Ruslan Nikolaev and Binoy Ravindran. 2021. Snapshot-free, trans-
parent, and robust memory reclamation for lock-free data structures.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI 2021). ACM,
New York, NY, USA, 987–1002. doi:10.1145/3453483.3454090

[27] Ruslan Nikolaev and Binoy Ravindran. 2024. A Family of Fast and
Memory Efficient Lock- and Wait-Free Reclamation. In Proceedings
of the 2024 ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Copenhagen, Denmark) (PLDI
’24). ACM, New York, NY, USA, 235:1–235:25. doi:10.1145/3658851

[28] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement:
Hazard Eras - Non-Blocking Memory Reclamation. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures
(Washington, DC, USA) (SPAA ’17). ACM, New York, NY, USA, 367–369.
doi:10.1145/3087556.3087588

[29] Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version
Based Reclamation. In 35th International Symposium on Distributed
Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual
Conference) (LIPIcs, Vol. 209). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 35:1–35:18. doi:10.4230/LIPIcs.DISC.2021.35

[30] Gali Sheffi and Erez Petrank. 2023. The ERA Theorem for Safe Memory
Reclamation. In Proceedings of the 2023 ACM Symposium on Principles
of Distributed Computing (Orlando, FL, USA) (PODC ’23). ACM, New
York, NY, USA, 102–112. doi:10.1145/3583668.3594564

[31] Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: neutral-
ization based reclamation. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Vir-
tual Event, Republic of Korea) (PPoPP ’21). ACM, New York, NY, USA,
175–190. doi:10.1145/3437801.3441625

[32] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank.
2012. Wait-Free Linked-Lists. In Proceedings of the International Con-
ference on Principles of Distributed Systems (OPODIS). Springer Berlin
Heidelberg, Berlin, Heidelberg, 330–344. doi:10.1007/978-3-642-35476-
2_23

[33] Shahar Timnat and Erez Petrank. 2014. A Practical Wait-Free Simu-
lation for Lock-Free Data Structures. In Proceedings of the 19th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (Orlando, Florida, USA) (PPoPP ’14). ACM, New York, NY, USA,
357–368. https://doi.org/10.1145/2555243.2555261

[34] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and
Michael L. Scott. 2018. Interval-based memory reclamation. In Proceed-
ings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Vienna, Austria) (PPoPP ’18). ACM, New York,
NY, USA, 1–13. doi:10.1145/3178487.3178488

Received 2025-09-02; accepted 2025-11-10

39

https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/3276513
https://doi.org/10.1145/1835698.1835736
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1109/TPDS.2008.167
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/3558481.3591102
https://doi.org/10.1145/564870.564881
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc
https://wccftech.com/amd-epyc-9654-96-core-genoa-cpu-tears-apart-milan-x-sapphire-rapids-cache-latency-benchmarks-up-to-30-tbps-over-2x-performance-increase
https://wccftech.com/amd-epyc-9654-96-core-genoa-cpu-tears-apart-milan-x-sapphire-rapids-cache-latency-benchmarks-up-to-30-tbps-over-2x-performance-increase
https://wccftech.com/amd-epyc-9654-96-core-genoa-cpu-tears-apart-milan-x-sapphire-rapids-cache-latency-benchmarks-up-to-30-tbps-over-2x-performance-increase
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3332466.3374540
https://doi.org/10.1145/3453483.3454090
https://doi.org/10.1145/3658851
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.4230/LIPIcs.DISC.2021.35
https://doi.org/10.1145/3583668.3594564
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1007/978-3-642-35476-2_23
https://doi.org/10.1007/978-3-642-35476-2_23
https://doi.org/10.1145/2555243.2555261
https://doi.org/10.1145/3178487.3178488

	Abstract
	1 Introduction
	2 Background
	2.1 Non-Blocking Progress Guarantees
	2.2 Memory Reclamation
	2.3 Overview of Data Structures
	2.4 Harris' and Harris-Michael Linked Lists

	3 Design
	3.1 Bird's-Eye View
	3.2 SCOT for Harris' List
	3.3 SCOT for the Natarajan-Mittal Tree
	3.4 Wait-Free Traversals

	4 Correctness
	4.1 Memory Bounds
	4.2 Safe Optimistic Traversal
	4.3 Lock-Freedom
	4.4 Wait-Free Traversals

	5 Evaluation
	6 Related Work
	6.1 Non-Blocking SMR
	6.2 Non-Blocking Data Structures

	7 Conclusion
	A Artifact Description
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Dependencies
	A.4 Compilation
	A.5 Experiment workflow
	A.6 Evaluation

	References

