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ABSTRACT

In this paper, we look at the problem of concurrent progress
from an unconventional perspective and find new benefits for
practical wait-freedom by considering security and reliability
implications of concurrent data structures. Although lock-
free data structures are increasingly used in many system
applications, they can be prone to denial-of-service (DoS) at-
tacks and pose some dilemmas for a user. For example, when
can we safely conclude that one side of a communication
channel is buggy or malicious? What should we do about
temporary slowdowns due to scheduling peculiarities?

We observe that when using wait-free approaches, these
questions can be fully resolved due to strict theoretical upper
bounds of wait-free algorithms; e.g., all loops are finite and
the worst-case number of iterations is known beforehand.
This discussion is crucial since other existing mechanisms,
such as read-copy-update (RCU), are also quite problematic
from the security standpoint. Moreover, even some well-
known hardware primitives are less resilient to DoS attacks.
We show that with recent advancements in lock- and wait-
free algorithm design, many past challenges can now be fully
overcome, potentially making such data structures more
appealing and easier to use than present RCU equivalents.

We present real-life examples that show benefits of wait-
free synchronization using Go-like channels. Our overheads
with respect to lock-free synchronization remain fairly low
while advantages with respect to more traditional fine-grained
locking are visible even under fairly moderate contention
due to a reduction of synchronization system calls.

1 INTRODUCTION

In the past, blocking synchronization in system applications
based on mutual exclusion sufficed. But even basic systems
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today are becoming increasingly multicore, necessitating bet-
ter OS parallelism support. Thus, non-blocking synchroniza-
tion, which allows manipulation of the same data structure
without mutual exclusion, becomes increasingly popular.

With blocking synchronization, two well-known problems
need to be addressed: deadlocks and starvation. Starvation-
freedom also implies deadlock-freedom, as the former pro-
vides much stronger guarantees. In the same vein, non-
blocking synchronization defines various progress guaran-
tees such as lock-freedom and wait-freedom. In simple terms,
wait-freedom, effectively, implies starvation-freedom but
within the context of non-blocking algorithms.

Historically, wait-free concurrent algorithms were much
slower than their (much simpler) lock-free counterparts, mak-
ing them impractical in most use cases. However, fast-path-
slow-path methods [16, 24, 32], which combine wait-free
progress guarantees with great performance characteristics
of lock-free algorithms by effectively using lock-free algo-
rithms most of the time, somewhat changed that perception.
That said, ordinary lock-free algorithms are still far more
common due to their smaller overall complexity.

Wait-free synchronization is widely noted for its great
latency characteristics that withstand adverse hardware and
software (e.g., an unfair OS scheduler) conditions by strictly
bounding the number of iterations for any thread under any
circumstances [13]. In this paper, we go a step further and
make an additional crucial insight, which did not receive a
proper attention in the literature previously. We argue that
wait-freedom is instrumental from the security standpoint and
should be adopted more widely in system applications.

In this paper, we also analyze commonly used approaches
such as read-copy-update (RCU) [18] and hardware instruc-
tions with respect to their resiliency to DoS attacks. We
find that typical RCU usage in the Linux kernel is very
prone to DoS attacks. Moreover, we argue against the use of
load-link (LL) and store-conditional (SC) instructions, imple-
mented in some RISC architectures, to provide strict theoret-
ical guarantees against DoS attacks.
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2 BACKGROUND AND RELATED WORK

Various in-memory data structures (queues, lists, hash tables,
skip lists, trees, etc) are used widely in system applications,
e.g., OS kernels, file systems, and network applications.

2.1 Read-Copy-Update (RCU)

The Linux kernel widely uses RCU [18]: it allows unhindered
reader parallelism but typically requires mutual exclusion
for writers (unless writer operations are trivial). RCU is es-
pecially beneficial in read-mostly data structures, where it
avoids locking on the read path. However, preemption in-
creases memory footprints in RCU data structures dramati-
cally [26], which is a problem when running an OS in a vir-
tual machine, especially in a multi-tenant cloud environment.
This problem may occur even on a bare metal hardware, e.g.,
in the presence of buggy code or an adversary.

2.2 Non-blocking Approaches

Fine-grained locking and RCU are still blocking approaches.
Alternative, non-blocking, approaches can be categorized
into three types. Obstruction-freedom ensures that a thread
always makes progress when executing without interfer-
ence from other threads. Lock-freedom permits thread in-
terference and guarantees that at least one thread always
makes progress after a finite number of steps. Finally, wait-
freedom, the strongest non-blocking guarantee, ensures that
all threads complete their operations after a finite number of
steps, meaning no thread will starve. Historically, wait-free
concurrent algorithms presented only theoretical interest due
to their complexity and lackluster practical performance.
While progress properties mainly focus on CPU resources,
an algorithm may also become blocking when memory runs
out: the process is stalled until the OS reclaims memory. Thus,
RCU is blocking even if writers avoid mutual exclusion as
RCU’s underlying mechanism does not bound memory usage
(even though Linux implements some practical mitigations).

2.3 Atomic Instructions

Compare-and-swap (CAS), known as cmpxchg in x86-64, an
instruction which atomically reads a memory word, com-
pares it with the expected value, and exchanges it with the
desired value, is used almost universally in non-blocking syn-
chronization. An alternative pair of instructions, load-link
(LL) / store-conditional (SC), which splits the loading and
writing phases but still guarantees atomicity, is preferred by
RISC-V [28], MIPS [4], and POWER [9]. Some CPUs such
as x86-64, RISC-V, and ARM64 [5] implement fetch-and-add
(FAA), an instruction that atomically increments a shared
memory value and returns a previous value, which is less
powerful than either CAS or LL/SC but scales better [21].
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While LL/SC is considered to be superior to CAS in the
literature [13] due to its flexibility, it is often used to simply
implement CAS, FAA, and other atomic primitives in assem-
bly, as LL/SC cannot be exposed to high-level languages [1].

C11 [3] and C++11 [2] expose CAS, FAA, and other op-
erations. Since some CPUs implement CAS via LL/SC, and
LL/SC can fail due to external events such as interrupts, there
are two versions of CAS: weak CAS which can sporadically
fail, and strong CAS which can only fail if the memory word
does not match the expected value. Strong CAS wraps around
weak CAS in a loop which repeats the same operation until
CAS either succeeds or fails due to the value mismatch. We
argue that architectures must support (strong) CAS natively
and avoid LL/SC altogether to prevent DoS attacks.

2.4 Practical Wait-Free Methods

A number of approaches exist for building wait-free data
structures. Notably, Kogan & Petrank’s fast-path-slow-path
method [16] uses a lock-free procedure for the fast path,
taken most of the time, and falls back to a wait-free procedure
if the fast path does not succeed after a small number of
tries. The original method is quite general but can only be
used with CAS, and consequently does not always scale well.
A recent paper [24] successfully created a custom method
for FAA, an instruction commonly used in non-blocking
queues [20, 24, 29, 32] for better scalability.

Although some challenges for wait-free data structures
remain, both the original and custom fast-path-slow-path
methods demonstrate that efficient wait-free data structures
can be created. We anticipate that even more wait-free data
structures will appear in the coming years, making it crucial
to consider them in the context of system applications.

3 SECURITY ANALYSIS

In this section, we analyze resilience of different blocking
and non-blocking approaches to DoS attacks.

3.1 RCU Challenges

The Linux kernel defines several major API functions for
RCU presented in Figure 1. Each reader calls (non-blocking)
rcu_read_lock and rcu_read_unlock. RCU needs to keep
track of active readers because allocated memory has to
be released to the OS when a writer decides to deallocate
memory that pertain to the data structure. However, memory
cannot be freed instantaneously as concurrent readers may
still access the same memory via stale pointers. RCU’s idea
is that memory has to be reclaimed with some delay, i.e.,
when all in-flight readers that potentially access previously
allocated memory are no longer in the critical section.

The main challenge for writers is to decide how to free
memory. Sometimes, writers can just wait (block) until all
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// Reader methods

rcu_read_lock (); // before critical section
rcu_read_unlock (); // after critical section
// Writer methods

synchronize_rcu (); // a blocking call
call_rcu (); // a non-blocking call
rcu_assign_pointer (); // advertise a pointer
// Common methods

rcu_dereference (); // retrieve a pointer

Figure 1: Linux’s RCU APL

readers are done, and a special call, synchronize_rcu, guar-
antees that memory can be safely reclaimed. Waiting, how-
ever, is not always acceptable, and writers may prefer to
use call_rcu, which frees memory via a special callback
function. With call_rcu, there is no delay, and writers are
not blocked. However, no memory will actually be reclaimed
when just one reader is indefinitely stalled [19]. When mem-
ory is fully exhausted, the OS will crash.

RCU documentation [8] recognizes call_rcu’s problem
and states that synchronize_rcu is more resilient to DoS
attacks as it naturally slow downs data structure updates.
However, this is a double-edged sword: limited update fre-
quency is achieved by a high latency of synchronize_rcu
(at least 1 jiffy), which causes massive slowdowns of several
milliseconds [12], unacceptable in many cases. Thus, Linux
also supports synchronize_rcu_expedited, a special ver-
sion of the operation for which latency is reduced to less
than 1 microsecond [12]. However, the reduced latency au-
tomatically increases the chance of DoS attacks. Moreover,
an adversary can first mount a control-flow attack by delay-
ing or removing rcu_read_unlock, as shown in Figure 2,
causing a subsequent DoS attack. With synchronize_rcu,
writers will simply hang, whereas with call_rcu, writers
will potentially exhaust all system memory.

We analyzed Linux 6.4.11 and found 495 of call_rcu, 19 of
synchronize_rcu_expedited, and 403 of synchronize_rcu
occurrences. Thus, > 50% of the code is DoS-susceptible.

The sheer complexity of the RCU APl in Linux is also a con-
cern: synchronize_rcu and synchronize_rcu_expedited
are just some examples of highly-specialized calls. Moreover,
there is also a “sleepable” RCU version (srcu) which mitigates
(but does not fully solve) the problem with stalled threads.
The burden of knowing intricate RCU details falls largely
on the programmer. Unsurprisingly, RCU bugs and vulner-
abilities are quite common, e.g., CVE-2024-27394 [27] is a
recently discovered race condition bug in the TCP stack.

3.2 Non-blocking Data Structures

The main problem with RCU is that it is blocking and does
not bound memory usage, which opens various venues for
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struct foo { struct rcu_head rh; };
struct foo «g;

void reader () {
rcu_read_lock ();
cur_mem = rcu_dereference(g);

// control -flow attack: unlock is
rcu_read_unlock (); // skipped or delayed
}

void writer_block () {
new_mem = malloc(sizeof(struct foo));
old_ mem = rcu_dereference(g);
rcu_assign_pointer (g, new_mem);
synchronize_rcu(); // Blocks indefinitely!
kfree (old_mem); // Not reachable

}

void writer_nonblock () {
for (i = 0; i < count; i++) {

new_mem = malloc(sizeof (struct foo));
old_mem = rcu_dereference(g);
rcu_assign_pointer (g, new_mem);
call_rcu(&old_mem->rh, callback_kfree);
// Exhausts memory because it allocates
// new memory without releasing anything!

Figure 2: DoS attack for RCU.

DoS attacks. Non-blocking approaches that bound memory
usage seem to be a great alternative to prevent DoS attacks.

Let us consider a common [15, 17, 22] scenario when a non-
blocking data structure is used as a communication channel
between any two entities that need to be isolated from each
other (two user-space processes, a user-space process and
the OS kernel, the OS kernel’s core and a driver, etc.) as
shown in Figure 3. In this scenario, the data structure resides
in the shared memory, but both entities are not trusting each
other: they verify the consistency of the data structure at
each step (validity of pointers, array indices, etc). However,
this is insufficient, e.g., one entity can create cyclic lists with
valid pointers such that a second-entity operation will be
unable to complete in a finite number of steps.

Clearly, obstruction-free algorithms are vulnerable to such
DoS attacks since one entity can deliberately interfere with
the other one even without damaging the data structure.
Common lock-free data structures such as queues are typi-
cally operation-wise lock-free [20] (e.g., at least one thread
enqueues and at least one thread dequeues simultaneously).
However, such guarantees are only present as long as the
data structure is not corrupted. Thus, lock-free data struc-
tures will have to explicitly limit the number of iterations to
detect DoS attacks. However, it is unclear where to draw the
line here. First, even in non-adversarial scenarios, a given
thread may theoretically never complete due to starvation.
Due to randomness, this scenario is unlikely in practice but
is still possible for a poorly-designed lock-free algorithm.
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Figure 3: Challenge: Slow-down vs. Damage.

However, an attacker may deliberately invalidate L1 cache
lines for the corresponding shared-memory region to arti-
ficially slow down CAS operations of one thread to reduce
the overall randomness and make such attacks realistic even
for well-designed lock-free algorithms. Second, tail latency
of lock-free algorithms can be quite substantial, making the
detection process tricky and slow. Loops should not be ter-
minated prematurely to avoid false-positives, and CPUs can
easily be hogged for several seconds even when the number
of iterations is in the range of 100,000-1,000,000. That will,
effectively, slow down the system and thus still achieve the
overall goal of a DoS attack.

Wait-free data structures stipulate finite number of steps
which require inter-thread cooperation to avoid CPU monop-
olization. In Figure 3, the entities will perform rigorous safety
checks at every step, especially because threads (from either
of the two entities) now collaborate and use shared state. The
challenge here is to implement an efficient algorithm, which
provides comparable performance to state-of-the-art lock-
free counterparts. As discussed in Section 2, this is attained
with fast-path-slow-path methods. A theoretical bound for
the worst-case number of (fast- and slow-path) iterations
is known. If that bound is exceeded, an entity can safely
conclude that the data structure is corrupted by the other
side. Unlike lock-free counterparts, this condition is detected
much sooner as thresholds for the fast-path methods do not
need to consider the worst-case time for slower threads.

To the best of our knowledge, wait-free synchronization
was not explicitly considered in the OS context for security
reasons. Most non-blocking data structures in use are lock-
free at best. Moreover, the concurrency literature focuses
on benefits of wait-free algorithms for performance reasons
only (i.e., reduced tail latency) and overlooks security.

We note that some well-known systems already use DoS-
safe data structures, though their scalability is limited. For ex-
ample, Xen [11] uses a single-producer and single-consumer
I/O ring buffer for backend and frontend drivers. This ring
buffer uses two independent locks for producers and con-
sumers: one producer and one consumer can run in parallel
and independently. Though this ring buffer is not scalable, it
is still better than lock-free approaches for security reasons.
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Adopting a wait-free ring buffer would have been even better:
it solves performance issues without sacrificing security.

3.3 LL/SC Vulnerability

LL/SC goes in line with the RISC design philosophy: it simpli-
fies the instruction set and provides greater flexibility when
implementing atomic operations. A CPU core atomically
reserves a word and loads from memory with the LL instruc-
tion. Then, a user performs desired operations. Finally, the
same memory word from the original reservation is over-
written by SC. If another core modifies the word during this
time, the reservation is lost, and SC will fail, leaving the
memory unchanged. When SC fails, the operation has to be
repeated. LL/SC can be used to implement CAS, FAA, and
many other atomic operations.

The main problem with LL/SC is that it is not one instruc-
tion with finite execution time. With LL/SC, sporadic failures
are possible, i.e., when no CPU core can successfully modify
the same memory word. First, since the reservation granule
is typically an L1 cache line, the same cache line modifica-
tion can already cause sporadic failures even if the actual
memory word is not modified. Second, any external event
(e.g., an OS interrupt) can cause SC to fail. An attacker may
deliberately invalidate the same cache line using a tight loop
with memory writes in a dedicated thread, which is much
shorter than the corresponding LL/SC loop and will cause
SC to incessantly fail until the offending thread is preempted.
An attacker may also trigger fake OS events to make SC fail.

Unfortunately, even when there is no adversarial intent,
it is hard to predict sporadic failures in many cases. For
example, suboptimal code can use false sharing, which is not
that uncommon in practice. Also, although interrupts can
be disabled in kernel space, this is much harder to control in
user space, and there is still no architectural guarantee that
sporadic failures are fully prevented even when interrupts
are disabled and there is no false sharing.

We thus argue that LL/SC is harmful and must be com-
pletely avoided irrespective of the CPU design philosophy
(RISC vs. CISC). Instead, modern architectures must pro-
vide native CAS similar to x86-64 and recent revisions of
ARM64. Only native CAS simultaneously guarantees finite
execution time and lack of sporadic failures, obviating the
need for weak CAS and strong CAS.! Although LL/SC pro-
vides greater flexibility that allows efficient implementation
of FAA and similar operations, the same security problem ex-
ists for them. In fact, FAA implemented via LL/SC is always
dangerous from the security perspective similar to strong
CAS, and there is no “weak FAA” in C11/C++11. Modern
architectures can provide native FAA which is similar to

IThis is another problem since a user reasonably expects that CAS takes
finite time, which is not guaranteed for strong CAS implemented via LL/SC.
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Figure 4: Throughput of Go-like channels.

that of x86-64 and recent revisions of ARMé64, though native
FAA is not fundamentally required to build correct wait-free
algorithms: it is only used for better performance.

Sometimes, it is argued [13] that LL/SC prevents the ABA
problem. In practice, this advantage is rarely used since
LL/SC is not exposed to high-level languages directly [1].
With CAS, we can also solve this problem by placing an
adjacent tag which is monotonically incremented by one
whenever the corresponding pointer changes. This solves
false-positive CAS matches but requires CAS2, a special in-
struction that compares and exchanges two adjacent words
simultaneously. CAS2, which is supported by the latest revi-
sions of x86-64 and ARM64, must also be implemented for
completeness by modern architectures.

We believe that the above arguments will be important to
hardware designers, especially because LL/SC’s simplicity
and ABA-safety were primary motivating factors for RISC-
V’s initial adoption of LL/SC [28], a decision which has al-
ready been partially re-evaluated by introducing both CAS
and CAS2 in RISC-V’s “Zacas” extension [28]. Note that the
compiler preference of native CAS instructions for ARM64
is still sometimes debated [14], and we hope that our paper
resolves this debate by looking also from the security angle.

4 PRELIMINARY EVALUATION

We implemented buffered channels in C, a popular concur-
rency primitive in Go [6]. Our approach is typical and uses
semaphores to synchronize senders with receivers, as well
as a mutex for the (internal) buffer. We then integrated a
lock-free buffer [21] to avoid buffer locking. Finally, we in-
tegrated a more advanced wait-free buffer [24]. It is worth
noting that in the latter two cases, we safely remove mutual
exclusion (for the buffer) on the fast path. As a result, since
semaphores are implemented via futuxes [7], system calls
are only needed when a sender or receiver needs to sleep.
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We ran the tests on AMD EPYC 9554 64-core machine (up
to 3.75 GHz), which has 128 hardware threads and 384 GiB
of RAM. Every test point runs for 10 seconds (5 times). We
allow up to 512 messages in channels. Every thread sends
data to or receives data from its own channel as well as from
the neighboring channel for the next thread. Thus, at most
two threads access every channel irrespective of the total
number of threads, which is quite favorable for a lock-based
version. Despite low contention, in Figure 4, both the lock-
and wait-free implementations already show a performance
boost of 2x-3x, which we attribute to the reduced number
of system calls for synchronization. (The gap would have
been even higher if more than two threads accessed the same
channel.) Moreover, the overhead of the wait-free approach
is low, and the gap between lock-/wait-free and blocking
versions grows with the increased number of threads.

5 FUTURE WORK

The proposed wait-free synchronization can benefit existing
software such as the Linux kernel, Xen [11], DPDK [31], and
SPDK [30], which use concurrent data structures widely.

Although RCU is far from being ideal, its use in Linux
is no accident: RCU has a simple and fully integrated safe
memory reclamation methodology, one of the key problem
that concurrent data structures must solve. Unfortunately,
the reclamation method used in RCU is blocking: it exhausts
system memory when one thread is indefinitely stalled [19].

Aside from using wait-free synchronization in Go-like
channels, shared-memory communication mechanisms that
span multiple independent entities, it would also be advisable
to adopt wait-free synchronization for ordinary in-kernel
data structures in lieu of RCU. A critical piece for wait-free
data structures is wait-free memory reclamation that guar-
antees bounded memory usage. This problem was already
addressed in [23, 25], removing the remaining obstacle for
wait-free synchronization. Moreover, wait-free reclamation
can also help to build a new generation of RCU to properly
address its present issues.

API Complexity and Flexibility. Linux offers a zero-copy API
for managing lists through “list.h”, which uses locks, and
“rculist.h”, which relies on RCU; both are extensively utilized
across various device drivers. In contrast, “freelist.h”, labeled
as “lockless” provides a much more restricted list implemen-
tation that deviates significantly from the API used by the
other two. However, recently, it has been demonstrated [10],
that zero-copying is feasible for lock-free algorithms. The
new API is even closer to “list.h” than “rculist.h”: RCU still
puts many restrictions on how things can be moved around.
By adapting this approach to wait-free algorithms, we may
simplify the usage complexity of RCU-based algorithms.
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6 CONCLUSIONS

In this paper, we analyzed various blocking and non-blocking
approaches with respect to their resiliency to DoS attacks.
We advise better vigilance when using RCU. Despite that the
possibility of DoS attacks is well-known for RCU, we find
little evidence that programmers take any tangible steps to
prevent them. Furthermore, we make a case for a much wider
adoption of wait-free synchronization, which will improve
both performance (latency) and DoS resiliency of shared
data structures. We also analyzed different hardware prim-
itives, and concluded that LL/SC must be entirely avoided
irrespective of any perceived benefit for RISC architectures.

To the best of our knowledge, this paper is the first one
to analyze these issues in a more or less systematic way,
which can help future systems researchers to fully address
or mitigate security challenges in future CPU architectures,
OS designs, and applications.
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