
Parsec: Fast, Scalable, and Secure Design
with Wait-Free Parallelism

Ruslan Nikolaev, rnikola@psu.edu, The Pennsylvania State University, USA

mailto:rnikola@psu.edu

Thread Synchronization

Thread Synchronization

• Modern systems are increasingly multicore
• Mutual exclusion does not suffice => need better parallelism support

Thread Synchronization

• Modern systems are increasingly multicore
• Mutual exclusion does not suffice => need better parallelism support

• Alternatives: fine-grained locks and read-copy-update (RCU)
• These approaches are still blocking and need mutual exclusion

Thread Synchronization

• Modern systems are increasingly multicore
• Mutual exclusion does not suffice => need better parallelism support

• Alternatives: fine-grained locks and read-copy-update (RCU)
• These approaches are still blocking and need mutual exclusion

• Non-blocking data structures are becoming increasingly popular
• Obstruction-freedom: a thread always makes progress when executing

without interference from other threads
• Lock-freedom: at least one thread always makes progress (even with

interference)
• Wait-freedom: all threads always make progress

Lock-Freedom vs. Wait-Freedom

• Deadlock-freedom and starvation-freedom are well-known
properties in the blocking world
• Lock-free algorithms only guarantee global progress since individual

threads can still starve
• Wait-free algorithms prevent thread starvation

Lock-Freedom vs. Wait-Freedom

• Deadlock-freedom and starvation-freedom are well-known
properties in the blocking world
• Lock-free algorithms only guarantee global progress since individual

threads can still starve
• Wait-free algorithms prevent thread starvation

Blocking Non-Blocking
Deadlock-free Lock-free
Starvation-free Wait-free

Lock-Freedom vs. Wait-Freedom

• Deadlock-freedom and starvation-freedom are well-known
properties in the blocking world
• Lock-free algorithms only guarantee global progress since individual

threads can still starve
• Wait-free algorithms prevent thread starvation

Blocking Non-Blocking
Deadlock-free Lock-free
Starvation-free Wait-free

Background: Read-Copy-Update (RCU)

• Used widely in the Linux kernel
• Avoids mutual exclusion for readers
• But does not solve synchronization for writers unless it is trivial

• Great performance for reading-dominated workloads
• Has a built-in memory reclamation strategy

• Can safely reclaim memory objects even though readers have stale pointers

Background: Read-Copy-Update (RCU)

Delete P

Thread A Thread B Thread C

One thread wants to de-allocate a memory object which is
still reachable by concurrent threads

Background: Read-Copy-Update (RCU)

Thread A Thread B Thread C

One thread wants to de-allocate a memory object which is
still reachable by concurrent threads

Dereference P

Delete P

Dereference P

SEGFAULT!

Something
went wrong! Yep!

SEGFAULT!

Background: Read-Copy-Update (RCU)

• Used widely in the Linux kernel
• Avoids mutual exclusion for readers
• But does not solve synchronization for writers unless it is trivial

• Great performance for reading-dominated workloads
• Has a built-in memory reclamation strategy

• Can safely reclaim memory objects even though readers have stale pointers

• ... But RCU has a known but rarely discussed problem
• Vulnerability to denial-of-service (DoS) attacks

Background: Read-Copy-Update (RCU)

• Used widely in the Linux kernel
• Avoids mutual exclusion for readers
• But does not solve synchronization for writers unless it is trivial

• Great performance for reading-dominated workloads
• Has a built-in memory reclamation strategy

• Can safely reclaim memory objects even though readers have stale pointers

• ... But RCU has a known but rarely discussed problem
• Vulnerability to denial-of-service (DoS) attacks

RCU Vulnerability: Exhausting Memory

RCU Vulnerability: Exhausting Memory

RCU Vulnerability: Exhausting Memory

RCU Vulnerability: Exhausting Memory

RCU Vulnerability: Exhausting Memory

• Non-blocking call_rcu is problematic
• Can easily exhaust memory, virtually no limit
• High memory footprints: see “The RCU-Reader Preemption Problem in

VMs” by Aravinda Prasad, K. Gopinath, and Paul E. McKenney [ATC'17]

RCU Vulnerability: Exhausting Memory

• Non-blocking call_rcu is problematic
• Can easily exhaust memory, virtually no limit
• High memory footprints: see “The RCU-Reader Preemption Problem in

VMs” by Aravinda Prasad, K. Gopinath, and Paul E. McKenney [ATC'17]
• synchronize_rcu blocks the execution
• Is it better than high memory consumption?
• Has a high latency of at least 1 jiffy, slowdowns of several milliseconds

RCU Vulnerability: Exhausting Memory

• Non-blocking call_rcu is problematic
• Can easily exhaust memory, virtually no limit
• High memory footprints: see “The RCU-Reader Preemption Problem in

VMs” by Aravinda Prasad, K. Gopinath, and Paul E. McKenney [ATC'17]
• synchronize_rcu blocks the execution
• Is it better than high memory consumption?
• Has a high latency of at least 1 jiffy, slowdowns of several milliseconds

• High latency of synchronize_rcu can mitigate DoS attacks
• But not fully and is not always acceptable...
• synchronize_rcu_expedited => more aggressive and vulnerable to DoS

What is the Solution?

What is the Solution?

• Problem: DoS is closely related to progress properties

What is the Solution?

• Problem: DoS is closely related to progress properties
• RCU is actually not lock-free, blocking even for readers
• Recall: lock-freedom means at least one thread always makes progress
• But when memory is exhausted, no further progress can be made

(irrespective whether it is a reader or a writer)

What is the Solution?

• Problem: DoS is closely related to progress properties
• RCU is actually not lock-free, blocking even for readers
• Recall: lock-freedom means at least one thread always makes progress
• But when memory is exhausted, no further progress can be made

(irrespective whether it is a reader or a writer)
• Solution: Use non-blocking approaches instead?
• Note obstruction-free approaches are vulnerable to DoS because they

depend on non-interference of threads
• Can lock-free algorithms help with that?

What is the Solution?

• Problem: DoS is closely related to progress properties
• RCU is actually not lock-free, blocking even for readers
• Recall: lock-freedom means at least one thread always makes progress
• But when memory is exhausted, no further progress can be made

(irrespective whether it is a reader or a writer)
• Solution: Use non-blocking approaches instead?
• Note obstruction-free approaches are vulnerable to DoS because they

depend on non-interference of threads
• Can lock-free algorithms help with that? Short answer: No

But wait-free algorithms can

What is the Problem with Lock-Freedom?

• A given thread may theoretically never complete due to starvation
• Unlikely in practice due to randomness
• Randomness can be lost when an attacker deliberately slows down

atomic operations by invalidating L1 cache lines

What is the Problem with Lock-Freedom?

• A given thread may theoretically never complete due to starvation
• Unlikely in practice due to randomness
• Randomness can be lost when an attacker deliberately slows down

atomic operations by invalidating L1 cache lines

Entity 1 Entity 2

Queue
CorruptionInfinite loop

Shared-memory
data structure

How do we know that the delay is not transient and the loop is
infinite (e.g., queue is corrupted)?

Wait-Free Approaches

Wait-Free Approaches

• Historically harder to implement
• Now more feasible with Kogan-Petrank [PPoPP'12] “fast-path-slow-path”

and similar methods
• Threads collaborate to bound the number of operations for each thread

Wait-Free Approaches

• Historically harder to implement
• Now more feasible with Kogan-Petrank [PPoPP'12] “fast-path-slow-path”

and similar methods
• Threads collaborate to bound the number of operations for each thread

• Provide a theoretical upper-bound for the number of iterations
• When exceeding this threshold, we can declare that the data structure is

corrupted by the other side
• Assuming rigorous memory safety checks and this bound, we can avoid

DoS => an insight that was not widely discussed in the literature

Hardware Primitives

Hardware Primitives

• RISC CPUs widely use a pair of instructions: Load-Link (LL) and
Store-Conditional (SC)
• Not guaranteed to ever succeed due to interrupts, false sharing, etc.

Hardware Primitives

• RISC CPUs widely use a pair of instructions: Load-Link (LL) and
Store-Conditional (SC)
• Not guaranteed to ever succeed due to interrupts, false sharing, etc.

• Compare-and-Swap (CAS)
• A single CPU instruction => does not have the above problem

Hardware Primitives

• RISC CPUs widely use a pair of instructions: Load-Link (LL) and
Store-Conditional (SC)
• Not guaranteed to ever succeed due to interrupts, false sharing, etc.

• Compare-and-Swap (CAS)
• A single CPU instruction => does not have the above problem

• Specialized instructions
• Fetch-and-Add (FAA) and SWAP (XCHG)
• Can be implemented via LL/SC and CAS

Hardware Primitives

Hardware Primitives

• CAS is considered inferior to LL/SC [Herlihy's Hierarchy]
• ABA problem (false-positive match) is possible when objects are being

recycled and pointers happen to be the same
• FAA, SWAP, etc. is potentially more expensive via CAS
• LL/SC while theoretically superior, prevents nesting and restricts types of

operations in practice

Hardware Primitives

• CAS is considered inferior to LL/SC [Herlihy's Hierarchy]
• ABA problem (false-positive match) is possible when objects are being

recycled and pointers happen to be the same
• FAA, SWAP, etc. is potentially more expensive via CAS
• LL/SC while theoretically superior, prevents nesting and restricts types of

operations in practice
• But these problems can be solved
• Double-width CAS (cmpxchg16b), where the second word is a

monotonically increasing tag, solves the ABA problem
• Wait-free FAA and SWAP can be implemented natively in hardware

Issues with LL/SC

• “Strong” CAS implemented via LL/SC is problematic
• Programmers expect CAS either succeed or fail after finite time
• But when implementing via LL/SC, we have a potentially infinite loop

• “Weak” CAS is safer for lock-free algorithms
• But programmers are not necessarily aware of this
• No bound for wait-free algorithms => no wait-freedom

• No “weak” FAA, etc.
• Always dangerous to use

Issues with LL/SC

• “Strong” CAS implemented via LL/SC is problematic
• Programmers expect CAS either succeed or fail after finite time
• But when implementing via LL/SC, we have a potentially infinite loop

• “Weak” CAS is safer for lock-free algorithms
• But programmers are not necessarily aware of this
• No bound for wait-free algorithms => no wait-freedom

• No “weak” FAA, etc.
• Always dangerous to use

Conclusion: LL/SC is unsafe and bad even for RISC architectures!
Fortunately, AArch64 and RISC-V already fixed this problem

Evaluation Setup

Evaluation Setup

• AMD EPYC 9554, 64 cores, 128 hardware threads, 384 GiB of RAM

Evaluation Setup

• AMD EPYC 9554, 64 cores, 128 hardware threads, 384 GiB of RAM
• Go-like channels
• Every thread sends to or receives from its own channel and from another

channel for the next thread => at most two threads access any channel
• Up to 512 messages in any channel

Evaluation Setup

• AMD EPYC 9554, 64 cores, 128 hardware threads, 384 GiB of RAM
• Go-like channels
• Every thread sends to or receives from its own channel and from another

channel for the next thread => at most two threads access any channel
• Up to 512 messages in any channel

• Our C implementation
• Straight-forward implementation using semaphores and buffer locks
• Semaphores and a lock-free ring buffer by Nikolaev [DISC'19]
• Semaphores and a wait-free ring buffer by Nikolaev & Ravindran [SPAA'22]
• The latter two approaches are non-blocking unless sleeping (nothing to

produce or to consume)

Evaluation

Threads

1 16 32 48 64 80 96 112 128

M
O
ps
/s
ec

0

50

100

150

200

250

300
Blocking
Lock-free
Wait-free

Evaluation

Despite low-
contention,
blocking version is
2x-3x slower

System calls are
needed to
synchronize even
just two threads

Threads

1 16 32 48 64 80 96 112 128

M
O
ps
/s
ec

0

50

100

150

200

250

300
Blocking
Lock-free
Wait-free

Code Availability

• More information and code to be released at:

https://github.com/rusnikola/parsec

https://github.com/rusnikola/parsec

Code Availability

• More information and code to be released at:

https://github.com/rusnikola/parsec

Thank You! Questions?

https://github.com/rusnikola/parsec

	Parsec: Fast, Scalable, and Secure Design with Wait-Free Parall
	Thread Synchronization (1)
	Thread Synchronization (2)
	Thread Synchronization (3)
	Thread Synchronization (4)
	Lock-Freedom vs. Wait-Freedom (1)
	Lock-Freedom vs. Wait-Freedom (2)
	Lock-Freedom vs. Wait-Freedom (3)
	Background: Read-Copy-Update (RCU)
	Background: Read-Copy-Update (RCU) (2)
	Background: Read-Copy-Update (RCU) (3)
	Background: Read-Copy-Update (RCU) (4) (1)
	Background: Read-Copy-Update (RCU) (4) (2)
	RCU Vulnerability: Exhausting Memory (1)
	RCU Vulnerability: Exhausting Memory (2)
	RCU Vulnerability: Exhausting Memory (2)
	RCU Vulnerability: Exhausting Memory (3) (1)
	RCU Vulnerability: Exhausting Memory (3) (2)
	RCU Vulnerability: Exhausting Memory (3) (3)
	RCU Vulnerability: Exhausting Memory (3) (4)
	What is the Solution? (1)
	What is the Solution? (2)
	What is the Solution? (3)
	What is the Solution? (4)
	What is the Solution? (5)
	What is the Problem with Lock-Freedom? (1)
	What is the Problem with Lock-Freedom? (2)
	Wait-Free Approaches (1)
	Wait-Free Approaches (2)
	Wait-Free Approaches (3)
	Hardware Primitives (1)
	Hardware Primitives (2)
	Hardware Primitives (3)
	Hardware Primitives (4)
	Hardware Primitives (2) (1)
	Hardware Primitives (2) (2)
	Hardware Primitives (2) (3)
	Issues with LL/SC (1)
	Issues with LL/SC (2)
	Evaluation Setup (1)
	Evaluation Setup (2)
	Evaluation Setup (3)
	Evaluation Setup (4)
	Evaluation (1)
	Evaluation (2)
	Code Availability (1)
	Code Availability (2)

