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• Mutual exclusion does not suffice => need better parallelism support

•  Alternatives: fine-grained locks and read-copy-update (RCU)
• These approaches are still blocking and need mutual exclusion

• Non-blocking data structures are becoming increasingly popular
• Obstruction-freedom: a thread always makes progress when executing 

without interference from other threads
• Lock-freedom: at least one thread always makes progress (even with 

interference)
• Wait-freedom: all threads always make progress
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Background: Read-Copy-Update (RCU)

• Used widely in the Linux kernel
• Avoids mutual exclusion for readers
• But does not solve synchronization for writers unless it is trivial

• Great performance for reading-dominated workloads 
• Has a built-in memory reclamation strategy

• Can safely reclaim memory objects even though readers have stale pointers
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RCU Vulnerability: Exhausting Memory

• Non-blocking call_rcu is problematic
• Can easily exhaust memory, virtually no limit
• High memory footprints: see “The RCU-Reader Preemption Problem in 

VMs” by Aravinda Prasad, K. Gopinath, and Paul E. McKenney [ATC'17]
• synchronize_rcu blocks the execution
• Is it better than high memory consumption?
• Has a high latency of at least 1 jiffy, slowdowns of several milliseconds

• High latency of synchronize_rcu can mitigate DoS attacks
• But not fully and is not always acceptable...
• synchronize_rcu_expedited => more aggressive and vulnerable to DoS
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• Problem: DoS is closely related to progress properties
• RCU is actually not lock-free, blocking even for readers
• Recall: lock-freedom means at least one thread always makes progress
• But when memory is exhausted, no further progress can be made 

(irrespective whether it is a reader or a writer)
• Solution: Use non-blocking approaches instead?
• Note obstruction-free approaches are vulnerable to DoS because they 

depend on non-interference of threads
• Can lock-free algorithms help with that? Short answer: No

But wait-free algorithms can
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What is the Problem with Lock-Freedom?

• A given thread may theoretically never complete due to starvation
• Unlikely in practice due to randomness
• Randomness can be lost when an attacker deliberately slows down 

atomic operations by invalidating L1 cache lines

Entity 1 Entity 2

Queue
CorruptionInfinite loop

Shared-memory 
data structure

How do we know that the delay is not transient and the loop is 
infinite (e.g., queue is corrupted)?   
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Wait-Free Approaches

• Historically harder to implement
• Now more feasible with Kogan-Petrank  [PPoPP'12] “fast-path-slow-path” 

and similar methods
• Threads collaborate to bound the number of operations for each thread

• Provide a theoretical upper-bound for the number of iterations
• When exceeding this threshold, we can declare that the data structure is 

corrupted by the other side
• Assuming rigorous memory safety checks and this bound, we can avoid 

DoS => an insight that was not widely  discussed in the literature
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• RISC CPUs widely use a pair of instructions: Load-Link (LL) and 
Store-Conditional (SC)
• Not guaranteed to ever succeed due to interrupts, false sharing, etc.

• Compare-and-Swap (CAS)
• A single CPU instruction => does not have the above problem

• Specialized instructions
• Fetch-and-Add (FAA) and SWAP (XCHG)
• Can be implemented via LL/SC and CAS 



Hardware Primitives



Hardware Primitives

• CAS is considered inferior to LL/SC [Herlihy's Hierarchy]
• ABA problem (false-positive match) is possible when objects are being 

recycled and pointers happen to be the same
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• CAS is considered inferior to LL/SC [Herlihy's Hierarchy]
• ABA problem (false-positive match) is possible when objects are being 

recycled and pointers happen to be the same
• FAA, SWAP, etc. is potentially more expensive via CAS
• LL/SC while theoretically superior, prevents nesting and restricts types of 

operations in practice
• But these problems can be solved
• Double-width CAS (cmpxchg16b), where the second word is a 

monotonically increasing tag, solves the ABA problem
• Wait-free FAA and SWAP can be implemented natively in hardware
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• “Strong” CAS implemented via LL/SC is problematic
• Programmers expect CAS either succeed or fail after finite time
• But when implementing via LL/SC, we have a potentially infinite loop

• “Weak” CAS is safer for lock-free algorithms
• But programmers are not necessarily aware of this
• No bound for  wait-free algorithms => no wait-freedom

• No “weak” FAA, etc.
• Always dangerous to use



Issues with LL/SC

• “Strong” CAS implemented via LL/SC is problematic
• Programmers expect CAS either succeed or fail after finite time
• But when implementing via LL/SC, we have a potentially infinite loop

• “Weak” CAS is safer for lock-free algorithms
• But programmers are not necessarily aware of this
• No bound for  wait-free algorithms => no wait-freedom

• No “weak” FAA, etc.
• Always dangerous to use

Conclusion: LL/SC is unsafe and bad even for RISC architectures!
Fortunately, AArch64 and RISC-V already fixed this problem
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• AMD EPYC 9554, 64 cores, 128 hardware threads, 384 GiB of RAM
• Go-like channels
• Every  thread sends to or receives from its own channel and from another 

channel for the next thread => at most two threads access any channel
• Up to 512 messages in any channel

• Our C implementation
• Straight-forward implementation using semaphores and buffer locks
• Semaphores and a lock-free ring buffer by Nikolaev [DISC'19]
• Semaphores and a wait-free ring buffer by Nikolaev & Ravindran [SPAA'22]
• The latter two approaches  are non-blocking unless sleeping (nothing to 

produce or to consume)
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Evaluation

Despite low-
contention, 
blocking version is 
2x-3x slower

System calls are 
needed to 
synchronize even 
just two threads
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Thank You! Questions?

https://github.com/rusnikola/parsec
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