
LibrettOS:

A Dynamically Adaptable 

Multiserver-Library OS
Ruslan Nikolaev, Mincheol Sung, Binoy Ravindran

16th ACM SIGPLAN/SIGOPS International Conference on 

Virtual Execution Environments (VEE 2020), March 17, 2020

1



Motivation

 The monolithic OS design is inadequate for 

modern systems

 Lack of isolation, failure recovery, large 

trusted computing base (TCB)

 Kernel-bypass libraries or library OS improve 

performance

2

[Herder et al. ACSAC’06],

[Nikolaev et al. SOSP’13],

[Kantee login’14],

[Lankes et al. ROSS’16],

[Decky 2017]



Motivation

 The monolithic OS design is inadequate for 
modern systems

 Lack of isolation, failure recovery, large 
trusted computing base (TCB)

 Kernel-bypass libraries or library OS improve 
performance

 Multiple OS paradigms seamlessly integrated 
in the same OS are desirable

 Application-specific requirements 
(performance, security)

 Shared driver code base

 No code rewrite (POSIX compatibility)

 Limited physical (e.g., SR-IOV) resources

 Dynamic switch 3

[Herder et al. ACSAC’06],

[Nikolaev et al. SOSP’13],

[Kantee login’14],

[Lankes et al. ROSS’16],

[Decky 2017]



Example: Server Ecosystem

4

 The network server for most applications



Example: Server Ecosystem

5

 Direct access for certain applications



Rump Kernels and Rumprun

 The concept is introduced

by Antti Kantee and 

NetBSD community

 NetBSD code consists of 

anykernel components 

with can be used in both 

kernel and user space

 The rumprun unikernel is 

effectively a library OS

6



Rump Kernels and Rumprun

 Pros

 Very flexible

 Reuse most of NetBSD code

(both drivers and the user-space environment)

 The rump kernel part is upstreamed

 A permissive license (2-Clause BSD) for the most code

 Cons

 Rumprun lacks SMP and Xen HVM support

 The unikernel model is not always suitable

7



LibrettOS

 Based on rumprun

 Adds SMP and Xen HVM support

 Reuses NetBSD’s device drivers and user-space environment

 Uses the Xen hypervisor

 A more advanced OS model

 Our prototype implements the network server

 Applications can also directly access resources (NIC, NVMe)

 Dynamic switch

8



LibrettOS Architecture

9

 Direct mode applications



LibrettOS Architecture

 Network server

10



LibrettOS Architecture

 Applications that use servers

11



Network Server

 A low-level design (direct L2 forwarding)

 TCP runs in the application address space

 A full recovery is possible as long as TCP does not time out

 Accommodates two paradigms easily

 A dynamic switch is feasible

 Fast IPC

 Uses Xen-specific capabilities (e.g., shared memory, VIRQ)

 Lock-free queues

12



Network Server

 The IPC channel exchanges mbufs

 Rx/Tx lock-free ring buffers (shared memory)

 Virtual interrupts (VIRQ)

13



Network Server: Portmap Table

 The portmap (port-to-domain map) table is kept in Xen

 64K entries for TCP and 64K entries for UDP

 Can be accessed (read-only) by the network server

 Applications issue a port-bind hypercall

14



Dynamic switch

 Applications that do not need a dynamic switch, use the network server and 

share the same IP

15



Dynamic switch

 Applications that need a dynamic switch, reserve a dedicated IP when 
connecting to the network server.

 Initially their VIF redirects packets the network server

16



Dynamic switch

 When the dynamic switch is requested, the corresponding IP is deactivated on 

the network server side, and the corresponding physical interface is 

configured

17



Dynamic switch

 Applications that always need direct access avoid an intermediate VIF and 

access the physical interface directly

18



Evaluation: System Configuration

Processor 2 x Intel Xeon Silver 4114, 2.20GHz

Number of cores 10 per processor, per NUMA node

HyperThreading OFF (2 per core)

TurboBoost OFF

L1/L2 cache 64 KB / 1024 KB per core

L3 cache 14080 KB

Main Memory 96 GB

Network Intel x520-2 10GbE (82599ES)

Storage Intel DC P3700 NVMe 400 GB

Xen 4.10.1

Linux 4.13

NetBSD 8.0 + NET_MPSAFE

Jumbo Frames (mtu = 9000)

19



Evaluation

 NetPIPE: network throughput (a ping pong benchmark)

 64 bytes .. 512 K

 All systems except the original Rumprun-PV have comparable performance

20



Evaluation

 NFS server

 Executing Sysbench/FileIO from the client machine

 Direct NVMe initialized with ext3, mixed I/O

21



Evaluation

 Nginx HTTP server

 10,000 requests from the 

client side

 Concurrency 1 .. 60

 Blocks 4K .. 128K

 LibrettOS has a better 

performance for smaller 

blocks

22



Evaluation

 Nginx: Dynamic Switch

 Concurrency 20

 LibrettOS-Hybrid: 50% in direct mode and 50% in server mode

23



Evaluation
 Memcached (a distributed memory caching system)

 The memcache_binary protocol

 1:10 of SET/GET operations (read-dominated)

 Each thread runs 10 clients, each client performs 100,000 operations

24



Evaluation

 Redis (in-memory key-value store)

 1,000,000 SET/GET operations, 128 bytes

 Various number of concurrent connections

25



Evaluation

 Failure recovery

 One application (Nginx uses the network server)

 Two applications: Nginx and Redis

26



Related Work

 Multiserver OS

 MINIX 3 [ACSAC’06], HelenOS, QNX

 Multiserver approaches for monolithic systems

 SawMill, VirtuOS [SOSP’13], Snap [SOSP’19] 

 Kernel-bypass libraries

 DPDK, SPDK

 Library OS approaches

 IX [OSDI’14], Arrakis [OSDI’14]

 Unikernels

 UKL [HotOS’19]

27



Conclusions

 LibrettOS is an OS that unites two models: multiserver and library OS

 LibrettOS is the first to seamless integrate these two models

 The same driver base (inherited from NetBSD)

 Applications do not need to be modified

 A dynamic switch is possible

 Applications can switch from the network server to direct mode with no 

interruption at runtime

 Our prototype solves a number of technical challenges

 SMP support, Xen HVM support

28



Availability

 LibrettOS’s source code is available at

http://librettos.org

29

http://librettos.org/


Availability

 LibrettOS’s source code is available at

http://librettos.org

30

THANK YOU!

Artwork attribution: NetBSD, Xen, nginx, memcached, redis, 10 GEA, NVM Express logos are 

from Wikipedia. The rump kernel logo is from rumpkernel.org. Xen logo/mascot belongs to 

XenProject.org. All other logos belong to their corresponding authors and/or projects.

http://librettos.org/

