
Joyride: Rethinking Linux's
Network Stack Design

Yanlin Du, Ruslan Nikolaev
The Pennsylvania State University
KISV '25, Seoul, Republic of Korea

The Growing Network Performance Gap

200-800 Gbps NICs

The Growing Network Performance Gap

Introducing
The Broadcom
400GbE RDMA NIC

200-800 Gbps NICs

The Growing Network Performance Gap

Intel E830 Launch Slide

Introducing
The Broadcom
400GbE RDMA NIC

200-800 Gbps NICs

The Growing Network Performance Gap

Intel E830 Launch Slide NVIDIA ConnectX 8 At Hot Chips 2025 Page 03

Introducing
The Broadcom
400GbE RDMA NIC

200-800 Gbps NICs

The Growing Network Performance Gap

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
● 8+ million packets per second

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
● 8+ million packets per second
● Packets trigger: interrupt → mode switch → kernel processing → memory copy

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
● 8+ million packets per second
● Packets trigger: interrupt → mode switch → kernel processing → memory copy
● Result: 4-8 cores needed for 100 Gbps

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps → 50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
● 8+ million packets per second
● Packets trigger: interrupt → mode switch → kernel processing → memory copy
● Result: 4-8 cores needed for 100 Gbps

Kernel processing, not hardware, is now the bottleneck

Limitations of Existing Solutions
Kernel Improvements:
BIG TCP => Bigger TCP window => Enable larger segments, fewer packets to process.
Generic Receive Offload (GRO) / Generic Segmentation Offload (GSO) => Packet
coalescing to reduce per-packet overhead
Performance gains are incremental

Kernel-Bypass Solutions:
IX [OSDI'14], TAS [EuroSys'19], Junction [NSDI'24], F-stack, among others

The Fundamental Gap:
No existing system provides a transparent kernel bypass for unmodified applications
on standard Linux

Kernel Bypass: IX [OSDI'14]
• An independent TCP implementation that uses DPDK code

partially
• Pros: Scalable performance, reducing lock overheads
• Cons:

o No POSIX compatibility, custom interfaces
o No support of numerous TCP extensions
o Packet delivery reliability issues
o Not being actively developed, not tested with modern NICs

Kernel Bypass: TAS [EuroSys'19]
• A more recent effort that runs on top of DPDK
• Pros:

o Scalable and CPU efficient stack
o TAS tries to optimize performance for datacenter applications which

helps to reduce costs => faster than IX
• Cons:

o No POSIX compatibility
o Like IX, does not provide full TCP stack that can replace Linux's TCP
o Not being updated recently, uses an older DPDK version
o Data-center specific assumptions: no IP fragmentation, reliable in

order delivery, rare timeouts

Kernel Bypass: RDMA
• Enables direct memory-to-memory communication between

machines, bypassing the CPU and kernel
• Pros:

o Very low-latency and high-throughput communication
o Zero-copy data transfer, reducing CPU overhead
o Offloads tasks to specialized NICs

• Cons:
o Specialized NIC is required => not a suitable general-purpose

replacement
o No TCP/POSIX support

Kernel Bypass: Junction [NSDI'24]
• A datacenter OS with a specific focus on Mellanox/NVIDIA NICs
• Pros:

o Very good performance and scalability
o Unmodified applications (mostly)

• Cons:
o Cannot replace Linux's standard stack
o Great performance but unclear how that works outside of

Mellanox/NVIDIA NICs
o These NICs still typically depend on a kernel-level driver

Kernel Bypass: F-Stack
• Uses FreeBSD code to build TCP on top of DPDK
• Pros:

o Good-quality code due to BSD-based TCP implementation
o Support various TCP extensions
o POSIX compatibility (but only partial due to lack of multithreading)

• Cons:
o No support for multithreading
o Limited LibC integration
o No NIC sharing across different programs

Joyride's Vision
 A Microkernel-Inspired Network Architecture

●User-Space TCP/IP Processing
FreeBSD's mature stack + kernel-bypass (DPDK) performance

●Separate TCP stack instance for each application

●Transparent Application Support
Modified LibC will integrate network-syscall replacements

●System-Wide Deployment
One service for all apps, no per-application network configuration

Joyride's Architecture

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Path

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Path

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

High-Performance NIC (100+ Gbps)

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

High-Performance NIC (100+ Gbps)

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

High-Performance NIC (100+ Gbps)

Legacy Kernel Path

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

High-Performance NIC (100+ Gbps)

Legacy Kernel Path

APP 2

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

High-Performance NIC (100+ Gbps)

Legacy Kernel Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

High-Performance NIC (100+ Gbps)

Legacy Kernel Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

● App 3
Program not related to network

High-Performance NIC (100+ Gbps)

Legacy Kernel Path Non-Network Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

● App 3
Program not related to network

High-Performance NIC (100+ Gbps)

Legacy Kernel Path Non-Network Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

APP 3

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

● App 3
Program not related to network

High-Performance NIC (100+ Gbps)

Legacy Kernel Path Non-Network Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

(File system, etc.)

Linux
Kernel

APP 3

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

● App 3
Program not related to network

Single NIC shared transparently across all paths
using SR-IOV and VF (Virtual Functions)

Potentially multiple isolated Joyride Services

High-Performance NIC (100+ Gbps)

Legacy Kernel Path Non-Network Path

APP 2

Traditional
TCP/IP Stack

Linux
Kernel

(File system, etc.)

Linux
Kernel

APP 3

Joyride Service

Joyride Path

Modified LibC
(Transparent Syscall Interception - Routes to Joyride or Kernel)

IPC Handler

FreeBSD
 TCP/IP Stack

DPDK
(Poll mode driver)

APP 1

User
space

Kernel
space

Joyride's Architecture
● App 1

High-performance network path via Joyride

● App 2
Corner-case applications: fall back to the
traditional TCP/IP stack

● App 3
Program not related to network

Single NIC shared transparently across all paths
using SR-IOV and VF (Virtual Functions)

Potentially multiple isolated Joyride Services

● Potentially a hybrid architecture for high-
demanding applications, LibrettOS [VEE'20]

Discussion: Security and Isolation

Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space

Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)

Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

● Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

● Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

● Performance:
Will use fast inter-process communication mechanisms based on shared memory and
scalable data structures

Preliminary Results: Experimental Setup
Hardware:
AMD EPYC 9005 series (both client and server)
Intel E810 100 Gbps NICs

System:
Ubuntu 22.04

Linux kernel 6.2

Benchmark: ttcp (Linux), a built-in throughput test (DPDK)
Standard ttcp version for blocking socket tests
Custom non-blocking ttcp variant implemented for comparison

(Note: the original ttcp tool did not support the non-blocking mode, we implemented
our own ttcp variant to test performance under the non-blocking mode)

Preliminary Results
Single-Process Throughput vs.
Buffer Size (Linux):

● Performance is greatly affected by
buffer size and whether it is blocking
vs. non-blocking

● Both implementations plateau far
below link capacity

Preliminary Results
Aggregate Network Throughput:

● 4-8 cores saturate the link in Linux vs.
just 1 core with DPDK

● Linux's network stack and mode
switches have a visible performance
overhead

● Buffer-size increases help but
provide only a sublinear improvement

● Linux's non-blocking version is not
helping much to reduce the overhead

Future Work

●Design a New TCP Stack and User-Space Server:
Port the most recent FreeBSD TCP/IP code to run over DPDK
Avoid shortcuts made in F-stack

●LibC Replacement and Integration Layer:
Complete POSIX socket API coverage with poll/select/epoll/etc

●Real-Life Tests:
Web servers (Nginx, Apache)
Databases (PostgreSQL, Redis)

Thank you!

Q&A?

Ruslan Nikolaev
rnikola@psu.edu

Yanlin Du
duyanlin@psu.edu

	Joyride: Rethinking Linux's Network Stack Design
	The Growing Network Performance Gap (1)
	The Growing Network Performance Gap (2)
	The Growing Network Performance Gap (3)
	The Growing Network Performance Gap (4)
	The Growing Network Performance Gap (2) (1)
	The Growing Network Performance Gap (2) (2)
	The Growing Network Performance Gap (2) (3)
	The Growing Network Performance Gap (2) (4)
	The Growing Network Performance Gap (2) (5)
	The Growing Network Performance Gap (2) (6)
	The Growing Network Performance Gap (2) (7)
	The Growing Network Performance Gap (2) (8)
	Limitations of Existing Solutions
	Kernel Bypass: IX [OSDI'14]
	Kernel Bypass: TAS [EuroSys'19]
	Kernel Bypass: RDMA
	Kernel Bypass: Junction [NSDI'24]
	Kernel Bypass: F-Stack
	Joyride's Vision
	Joyride's Architecture (1)
	Joyride's Architecture (2)
	Joyride's Architecture (3)
	Joyride's Architecture (4)
	Joyride's Architecture (5)
	Joyride's Architecture (6)
	Joyride's Architecture (7)
	Joyride's Architecture (8)
	Joyride's Architecture (9)
	Joyride's Architecture (10)
	Joyride's Architecture (11)
	Joyride's Architecture (12)
	Joyride's Architecture (13)
	Joyride's Architecture (14)
	Joyride's Architecture (15)
	Joyride's Architecture (16)
	Joyride's Architecture (17)
	Joyride's Architecture (18)
	Joyride's Architecture (19)
	Discussion: Security and Isolation (1)
	Discussion: Security and Isolation (2)
	Discussion: Security and Isolation (3)
	Discussion: Security and Isolation (4)
	Discussion: Security and Isolation (5)
	Discussion: Security and Isolation (6)
	Preliminary Results: Experimental Setup
	Preliminary Results
	Preliminary Results (2)
	Future Work
	Thank you!

