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The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps → 25 Gbps →  50 Gbps → 100 Gbps → 200 Gbps → 400 Gbps → 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU 
● 8+ million packets per second
● Packets trigger: interrupt → mode switch → kernel processing → memory copy
● Result:  4-8 cores needed for 100 Gbps

Kernel processing, not hardware, is now the bottleneck



Limitations of Existing Solutions
Kernel Improvements:
BIG TCP => Bigger TCP window => Enable larger segments, fewer packets to process.
Generic Receive Offload (GRO) / Generic Segmentation Offload (GSO) => Packet 
coalescing to reduce per-packet overhead
Performance gains are incremental

Kernel-Bypass Solutions:
IX [OSDI'14], TAS [EuroSys'19], Junction [NSDI'24], F-stack, among others

The Fundamental Gap:
No existing system provides a transparent kernel bypass for unmodified applications 
on standard Linux



Kernel Bypass: IX [OSDI'14]
• An independent TCP implementation that uses DPDK code 

partially
• Pros: Scalable performance, reducing lock overheads
• Cons:

o No POSIX compatibility, custom interfaces
o No support of numerous TCP extensions
o Packet delivery reliability issues
o Not being actively developed, not tested with modern NICs



Kernel Bypass: TAS [EuroSys'19]
• A more recent effort that runs on top of DPDK
• Pros:

o Scalable and CPU efficient stack
o TAS tries to optimize performance for datacenter applications which 

helps to reduce costs => faster than IX
• Cons:

o No POSIX compatibility
o Like IX, does not provide full TCP stack that can replace Linux's TCP
o Not being updated recently, uses an older DPDK version
o Data-center specific assumptions: no IP fragmentation, reliable in 

order delivery, rare timeouts



Kernel Bypass: RDMA
• Enables direct memory-to-memory communication between 

machines, bypassing the CPU and kernel
• Pros:

o Very low-latency and high-throughput communication
o Zero-copy data transfer, reducing CPU overhead
o Offloads tasks to specialized NICs

• Cons:
o Specialized NIC is required => not a suitable general-purpose 

replacement
o No TCP/POSIX support



Kernel Bypass: Junction [NSDI'24]
• A datacenter OS with a specific focus on Mellanox/NVIDIA NICs
• Pros:

o Very good performance and scalability
o Unmodified applications (mostly)

• Cons:
o Cannot replace Linux's standard stack
o Great performance but unclear how that works outside of 

Mellanox/NVIDIA NICs
o These NICs still typically depend on a kernel-level driver



Kernel Bypass: F-Stack
• Uses FreeBSD code to build TCP on top of DPDK
• Pros:

o Good-quality code due to BSD-based TCP implementation
o Support various TCP extensions
o POSIX compatibility (but only partial due to lack of multithreading)

• Cons:
o No support for multithreading
o Limited LibC integration
o No NIC sharing across different programs



Joyride's Vision
  A Microkernel-Inspired Network Architecture

●User-Space TCP/IP Processing
FreeBSD's mature stack + kernel-bypass (DPDK) performance

●Separate TCP stack instance for each application

●Transparent Application Support 
Modified LibC will integrate network-syscall replacements

●System-Wide Deployment
One service for all apps, no per-application network configuration
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Single NIC shared transparently across all paths 
using SR-IOV and VF (Virtual Functions)

Potentially multiple isolated Joyride Services

● Potentially a hybrid architecture for high-
demanding applications, LibrettOS [VEE'20]
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Discussion: Security and Isolation
● Privilege Separation:

Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

● Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

● Performance:
Will use fast inter-process communication mechanisms based on shared memory and 
scalable data structures



Preliminary Results: Experimental Setup
Hardware:
AMD EPYC 9005 series (both client and server)
Intel E810 100 Gbps NICs

System:
Ubuntu 22.04 

Linux kernel 6.2

Benchmark:  ttcp (Linux), a built-in throughput test (DPDK)
Standard ttcp version for blocking socket tests
Custom non-blocking ttcp variant implemented for comparison

(Note: the original ttcp tool did not support the non-blocking mode, we implemented 
our own ttcp variant to test performance under the non-blocking mode)



Preliminary Results
Single-Process Throughput vs. 
Buffer Size (Linux):

● Performance is greatly affected by 
buffer size and whether it is blocking 
vs. non-blocking

● Both implementations plateau far 
below link capacity



Preliminary Results
Aggregate Network Throughput:

● 4-8 cores saturate the link in Linux vs. 
just 1 core with DPDK

● Linux's network stack and mode 
switches have a visible performance 
overhead

● Buffer-size increases help but 
provide only a sublinear improvement

● Linux's non-blocking version is not 
helping much to reduce the overhead



Future Work

●Design a New TCP Stack and User-Space Server:
Port the most recent FreeBSD TCP/IP code to run over DPDK
Avoid shortcuts made in F-stack

●LibC Replacement and Integration Layer:
Complete POSIX socket API coverage with poll/select/epoll/etc

●Real-Life Tests:
Web servers (Nginx, Apache)
Databases (PostgreSQL, Redis)



Thank you!

Q&A? 

Ruslan Nikolaev
rnikola@psu.edu

Yanlin Du
duyanlin@psu.edu
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