@ PennState

The Growing Network Performance Gap

200-800 Gbps NICs

The Growing Network Performance Gap

Introducing Broadcom 400G NIC: Al Optimized NIC

400G high-performance NIC

200-800 Gbps NICs

High-scale RDMA

Introducing
The Broadcom
400GbE RDMA NIC

Industry’s lowest power

Longest reach 100G Serdes

O 0 0

© BROADCOM'

@ PennState

The Growing Network Performance Gap

Introducing Broadcom 400G NIC: Al Optimized NIC

Introducing

The Broadcom
400GbE RDMA NIC

400G high-performance NIC

High-scale RDMA

Industry’s lowest power

O 0 0

Longest reach 100G Serdes

Intel® Ethernet

200GbE Throughput at Higher Efficiency
E83O CO nt ro I I e rS a nd 2x bandwidth ger'i-;)n-lgen and \rn‘r;aroved erfnrmance per watt
Network Adapters

Pe 1ce networking for
on, cloud, telecom, and edge

ccurate & Advanced Timing Capabilities
PTM with 1588 PTP, SyncE, GNSS for Telecom, FSI, Al applications

Rakbiet © by
Robust Security

Secure Boot, Secure FW Upgrade and Dual Hardware Root of Trust

PennState

© BROADCOM

Intel EB30 Launch Slide

200-800 Gbps NICs

The Growing Network Performance Gap

Introducing Broadcom 400G NIC: Al Optimized NIC

400G high-performance NIC

High-scale RDMA

Introducing
The Broadcom

Industry’s lowest power

400GbE RDMA NIC

O 0 0

Longest reach 100G Serdes

Intel® Ethernet
E830 Controllers and
Network Adapters

erformance networking for
zation, cloud, telecom, and edge

200GbE Throughput at Higher Efficiency

2x bandwidth gen-on-gen and improved performance per watt andlor its subsidiaries. e BROADCOM’

Enabled by broad port density, for efficient resource scaling

Accurate & A 2d Timing Ca
PTM with 1588 PTP, SyncE, GNSS for Telecom, FSI, Al applications

Robust Security

Secure Boot, Secure FW Upgrade and Dual Hardware Root of Trust Intel E830 La un Ch Slid e

PennState

200-800 Gbps NICs

ConnectX-8 Isn’t Just Another NIC - It’s a SuperNIC!

Host / GPU
Conn_elct)(—s 800(_3 SuperNIC NeCL NIXL
Redefining networking for Al factory
Verbs
RDMA technology deployed over millions of GPUs
ConnectX-8

800G RDMA hardware pipeline, designed for Al bandwidth, latency and scale PCle Switch
Integrated load balancing, congestion control and reliability “

PSA Packet Processor
Deep data-path programmability for Al workload and data center versatility

Spectrum-X Ethernet Switch

Tight integration to system architecture

DOCA
(PCC/ PRDMA /
FLOW)

DPA
Event Processor

Network

Enterprise-class security

NVIDIA ConnectX 8 At Hot Chips 2025 Page 03

ZnViDiA I

The Growing Network Performance Gap

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace

@ PennState

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

@ PennState

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace
Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
® 8+ million packets per second

@ PennState

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace
Why cannot Linux keep up?
At 100 Gbps with 1500-byte MTU

® 8+ million packets per second
® Packets trigger: interrupt > mode switch > kernel processing > memory copy

@ PennState

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace

Why cannot Linux keep up?

At 100 Gbps with 1500-byte MTU
® 8+ million packets per second
® Packets trigger: interrupt > mode switch > kernel processing > memory copy
® Result: 4-8 cores needed for 100 Gbps

@ PennState

The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace
Why cannot Linux keep up?
At 100 Gbps with 1500-byte MTU
e 8+ million packets per second

® Packets trigger: interrupt > mode switch > kernel processing > memory copy
® Result: 4-8 cores needed for 100 Gbps

Kernel processing, not hardware, is now the bottleneck

@ PennState

Limitations of Existing Solutions

Kernel Improvements:

BIG TCP => Bigger TCP window => Enable larger segments, fewer packets to process.
Generic Receive Offload (GRO) / Generic Segmentation Offload (GSO) => Packet
coalescing to reduce per-packet overhead

Performance gains are incremental

Kernel-Bypass Solutions:
IX]OSDI'14], TAS [EuroSys'19], Junction [NSDI'24], F-stack, among others

The Fundamental Gap:
No existing system provides a transparent kernel bypass for unmodified applications
on standard Linux

@ PennState

Kernel Bypass: IX[OSDI'14]

* Anindependent TCP implementation that uses DPDK code

partially
* Pros: Scalable performance, reducing lock overheads
* Cons:

O No POSIX compatibility, custom interfaces
O No support of numerous TCP extensions

O Packet delivery reliability issues
e

Not being actively developed, not tested with modern NICs

Kernel Bypass: TAS [EuroSys'19]

* A more recent effort that runs on top of DPDK

* Pros:
O Scalable and CPU efficient stack
O TAS tries to optimize performance for datacenter applications which
helps to reduce costs => faster than IX

* Cons:

No POSIX compatibility

Like IX, does not provide full TCP stack that can replace Linux's TCP
Not being updated recently, uses an older DPDK version
Data-center specific assumptions: no IP fragmentation, reliable in
order delivery, rare timeouts

O O O O

Kernel Bypass: RDMA

* Enables direct memory-to-memory communication between
machines, bypassing the CPU and kernel

* Pros:
O Very low-latency and high-throughput communication
O Zero-copy data transfer, reducing CPU overhead
O Offloads tasks to specialized NICs

* Cons:
O Specialized NIC is required => not a suitable general-purpose

replacement
O No TCP/POSIX support

Kernel Bypass: Junction [NSDI'24]

A datacenter OS with a specific focus on Mellanox/NVIDIA NICs
* Pros:

O Very good performance and scalability
O Unmodified applications (mostly)
* Cons:
O Cannotreplace Linux's standard stack

O Great performance but unclear how that works outside of
Mellanox/NVIDIA NICs

O These NICs still typically depend on a kernel-level driver

Kernel Bypass: F-Stack

* Uses FreeBSD code to build TCP on top of DPDK

* Pros:

O Good-quality code due to BSD-based TCP implementation

O Support various TCP extensions

O POSIX compatibility (but only partial due to lack of multithreading)
* Cons:

O No support for multithreading

O Limited LibC integration

O No NIC sharing across different programs

Joyride's Vision

A Microkernel-Inspired Network Architecture

@ User-Space TCP/IP Processing

FreeBSD's mature stack + kernel-bypass (DPDK) performance

@ Separate TCP stack instance for each application

@ Transparent Application Support

Modified LibC will integrate network-syscall replacements

@® System-Wide Deployment

One service for all apps, no per-application network configuration

@ PennState

Joyride's Architecture

Joyride's Architecture

® App1
High-performance network path via Joyride

Joyride's Architecture

e App1
High-performance network path via Joyride User
space
Kernel
space

@ PennState

Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride User
space
Kernel
space

@ PennState

Joyride's Architecture

APP 1
o App 1 v
High-performance network path via Joyride
Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Kernel
space

@ PennState

Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride U
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel
sSpace

@ PennState

Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride U
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

@ PennState

Joyride's Architecture

APP 1
® AppT v
High-performance network path via Joyride T':Jsgztsag(0
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

@ PennState

Joyride's Architecture

APP 1
® AppT v
High-performance network path via Joyride fgsgztsaz 0
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

space

s
ook e
l

@ PennState

Joyride's Architecture

® App1
High-performance network path via Joyride

@ PennState

Joyride Path

APP 1

v
FreeBSD

TCPPStack Mo dified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

High-Performance NIC (100+ Gbps)

User

Kernel
space

Joyride's Architecture

APP 1
* Appf F +BSD
High-performance network path via Joyride ree
TCP/PStack Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
® App2 e
Corner-case applications: fall back to the Joyride Service Kernel

traditional TCP/IP stack space

High-Performance NIC (100+ Gbps)

@ PennState

Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
Corner-case applications: fall back to the
traditional TCP/IP stack

@ PennState

Joyride Path

Legacy Kernel Path
APP 1

v

FreeBSD

TCPPStack Mo dified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

- J

High-Performance NIC (100+ Gbps)

s
oot s
l

User

Kernel
space

Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
Corner-case applications: fall back to the
traditional TCP/IP stack

@ PennState

Joyride Path
Legacy Kernel Path
APP 1
v APP 2
FreeBSD v

TCPIPStack Modified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

- J

High-Performance NIC (100+ Gbps)

s
ook e
l

User

Kernel
space

Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
Corner-case applications: fall back to the
traditional TCP/IP stack

@ PennState

Joyride Path

APP 1

v
FreeBSD

Legacy Kernel Path

APP 2
v

TCP/IP Stack o .
" Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service e Kernel
Kernel space
Traditional

-

TCP/IP Stack

J

High-Performance NIC (100+ Gbps)

Joyride's Architecture

Legacy Kernel Path
APP 1

® App1 n +BSD APP 2

High-performance network path via Joyride ree v

TOPIPSEk Modified LibC User

e App?2 __| S mansparent Syscallintsresptipn=Routes toloyrideorkemali™> ___Sbace

Corner-case applications: fall back to the Joyride Service Linux Kernel

traditional TCP/IP stack Kernel space
® App 3 Traditional

TCP/IP Stack

Program not related to network -

N /

High-Performance NIC (100+ Gbps)

@ PennState

Joyride's Architecture N

Legacy Kernel Path| | Non-Network Path
APP 1
® App1 v APP 2
High-performance network path via Joyride TEELE v
TOPIPSEk Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
® App2 e N -
Corner-case applications: fall back to the Joyride Service Li Kernel
traditional TCP/IP stack X space
(IPCHandler) |~ Kernel i
® App 3 Traditional
Program not related to network - TCP/IP Stack \ %

N /

High-Performance NIC (100+ Gbps)

@ PennState

Joyride's Architecture N

Legacy Kernel Path| | Non-Network Path
APP 1
High-performance network path via Joyride TEELE v
TOPIPSEk Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
® App2 e N -
Corner-case applications: fall back to the Joyride Service Li Kernel
traditional TCP/IP stack X space
¢ App 3 Traditional
Program not related to network - TCP/IP Stack \ %

- J

High-Performance NIC (100+ Gbps)

@ PennState

Joyride's Architecture N

Legacy Kernel Path| | Non-Network Path
APP 1
High-performance network path via Joyride TEELE v
TCP/IPStack™ Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
® App2 e N e -
Corner-case applications: fall back to the Joyride Service : . Kernel
traditional TCP/IP stack Linux Linux space
® App 3 Traditional (File system, etc.)
Program not related to network - TCP/IP Stack \ %

N /

Single NIC shared transparently across all paths

using SR-IOV and VF (Virtual Functions) High-Performance NIC (100+ Gbps)

Potentially multiple isolated Joyride Services

@ PennState

Joyride's Architecture N

Legacy Kernel Path| | Non-Network Path
APP 1
. _ . . ree v
High-performance network path via Joyride TOPIPSESk Mo dified LibG User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
e App2 e { e En R e e $ooe -
Corner-case applications: fall back to the Joyride Service Li) Kernel
traditional TCP/IP stack X Linux space
® App 3 Traditional (File system, etc.)
Program not related to network - TCP/IP Stack \ %
e Potentially a hybrid architecture for high-
demanding applications, LibrettOS [VEE'20] _ -

Single NIC shared transparently across all paths

using SR-IOV and VF (Virtual Functions) High-Performance NIC (100+ Gbps)

Potentially multiple isolated Joyride Services

@ PennState

Discussion: Security and Isolation

Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space

Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)

@ PennState

Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

@ PennState

Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

e Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

@ PennState

Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

e Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

® Performance:
Will use fast inter-process communication mechanisms based on shared memory and
scalable data structures

@ PennState

Preliminary Results: Experimental Setup

Hardware:
AMD EPYC 9005 series (both client and server)
Intel E810 100 Gbps NICs

System:
Ubuntu 22.04
Linux kernel 6.2

Benchmark: ttcp (Linux), a built-in throughput test (DPDK)
Standard ttcp version for blocking socket tests
Custom non-blocking ttcp variant implemented for comparison

(Note: the original ttcp tool did not support the non-blocking mode, we implemented
our own ttcp variant to test performance under the non-blocking mode)

@ PennState

. . —— Blocking Recv 8 KB Buffer
Prelimina 'y Results ---+-- Blocking Recv 256KB Buffer

—+— Non-Blocking Recv 8 KB Buffer

Single-Process Throughput vs. ,
Non-Blocking Recv 256KB Buffer

Buffer Size (Linux):

@ Performance is greatly affected by 30 P - *
buffer size and whether it is blocking v o
vs. hon-blocking @ - /,x
@® Both implementations plateau far é_ 204 o« / —~
below link capacity S
>
O 15-
L
- “\‘
10 1 ’/’/‘—

8 16 32 64 128
Sender Buffer Size (KB)

@ PennState

Preliminary Results |
—e— Blocking Send 8KB Buffer

. ---e--- Blocking Send 256KB Buffer
Aggregate Network Throughput: —+— Non-Blocking Send 8KB Buffer

Non-Blocking Send 256KB Buffer

@ 4-8 cores saturate the link in Linux vs. ——-s-— DPDK Reference

just 1 core with DPDK

100 -
@® Linux's network stack and mode -
switches have a visible performance £ 807
overhead S
= 601
o
@ Buffer-size increases help but £ At
provide only a sublinear improvement §
= 20-
@® Linux's non-blocking version is not
helping much to reduce the overhead 0

1 2 4 8
Number of Processes/Cores

@ PennState

Future Work

@ Desigh a New TCP Stack and User-Space Server:

Port the most recent FreeBSD TCP/IP code to run over DPDK
Avoid shortcuts made in F-stack

@® LibC Replacement and Integration Layer:
Complete POSIX socket APl coverage with poll/select/epoll/etc

@ Real-Life Tests:

Web servers (Nginx, Apache)
Databases (PostgreSQL, Redis)

@ PennState

Thank you!

Q&A?

Yanlin Du
duyanlin@psu.edu

Ruslan Nikolaev
rnikola@psu.edu

@ PennState

	Joyride: Rethinking Linux's Network Stack Design
	The Growing Network Performance Gap (1)
	The Growing Network Performance Gap (2)
	The Growing Network Performance Gap (3)
	The Growing Network Performance Gap (4)
	The Growing Network Performance Gap (2) (1)
	The Growing Network Performance Gap (2) (2)
	The Growing Network Performance Gap (2) (3)
	The Growing Network Performance Gap (2) (4)
	The Growing Network Performance Gap (2) (5)
	The Growing Network Performance Gap (2) (6)
	The Growing Network Performance Gap (2) (7)
	The Growing Network Performance Gap (2) (8)
	Limitations of Existing Solutions
	Kernel Bypass: IX [OSDI'14]
	Kernel Bypass: TAS [EuroSys'19]
	Kernel Bypass: RDMA
	Kernel Bypass: Junction [NSDI'24]
	Kernel Bypass: F-Stack
	Joyride's Vision
	Joyride's Architecture (1)
	Joyride's Architecture (2)
	Joyride's Architecture (3)
	Joyride's Architecture (4)
	Joyride's Architecture (5)
	Joyride's Architecture (6)
	Joyride's Architecture (7)
	Joyride's Architecture (8)
	Joyride's Architecture (9)
	Joyride's Architecture (10)
	Joyride's Architecture (11)
	Joyride's Architecture (12)
	Joyride's Architecture (13)
	Joyride's Architecture (14)
	Joyride's Architecture (15)
	Joyride's Architecture (16)
	Joyride's Architecture (17)
	Joyride's Architecture (18)
	Joyride's Architecture (19)
	Discussion: Security and Isolation (1)
	Discussion: Security and Isolation (2)
	Discussion: Security and Isolation (3)
	Discussion: Security and Isolation (4)
	Discussion: Security and Isolation (5)
	Discussion: Security and Isolation (6)
	Preliminary Results: Experimental Setup
	Preliminary Results
	Preliminary Results (2)
	Future Work
	Thank you!

