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The Growing Network Performance Gap
The Challenge:

Network hardware
10 Gbps 2> 25 Gbps > 50 Gbps > 100 Gbps > 200 Gbps > 400 Gbps > 800 Gbps

Linux's network stack is not keeping up with this pace
Why cannot Linux keep up?
At 100 Gbps with 1500-byte MTU
e 8+ million packets per second

® Packets trigger: interrupt > mode switch > kernel processing > memory copy
® Result: 4-8 cores needed for 100 Gbps

Kernel processing, not hardware, is now the bottleneck
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Limitations of Existing Solutions

Kernel Improvements:

BIG TCP => Bigger TCP window => Enable larger segments, fewer packets to process.
Generic Receive Offload (GRO) / Generic Segmentation Offload (GSO) => Packet
coalescing to reduce per-packet overhead

Performance gains are incremental

Kernel-Bypass Solutions:
IX]OSDI'14], TAS [EuroSys'19], Junction [NSDI'24], F-stack, among others

The Fundamental Gap:
No existing system provides a transparent kernel bypass for unmodified applications
on standard Linux
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Kernel Bypass: IX[OSDI'14]

* Anindependent TCP implementation that uses DPDK code

partially
* Pros: Scalable performance, reducing lock overheads
* Cons:

O No POSIX compatibility, custom interfaces
O No support of numerous TCP extensions

O Packet delivery reliability issues
e

Not being actively developed, not tested with modern NICs




Kernel Bypass: TAS [EuroSys'19]

* A more recent effort that runs on top of DPDK

* Pros:
O Scalable and CPU efficient stack
O TAS tries to optimize performance for datacenter applications which
helps to reduce costs => faster than IX

* Cons:

No POSIX compatibility

Like IX, does not provide full TCP stack that can replace Linux's TCP
Not being updated recently, uses an older DPDK version
Data-center specific assumptions: no IP fragmentation, reliable in
order delivery, rare timeouts

O O O O




Kernel Bypass: RDMA

* Enables direct memory-to-memory communication between
machines, bypassing the CPU and kernel

* Pros:
O Very low-latency and high-throughput communication
O Zero-copy data transfer, reducing CPU overhead
O Offloads tasks to specialized NICs

* Cons:
O Specialized NIC is required => not a suitable general-purpose

replacement
O No TCP/POSIX support




Kernel Bypass: Junction [NSDI'24]

A datacenter OS with a specific focus on Mellanox/NVIDIA NICs
* Pros:

O Very good performance and scalability
O Unmodified applications (mostly)
* Cons:
O Cannotreplace Linux's standard stack

O Great performance but unclear how that works outside of
Mellanox/NVIDIA NICs

O These NICs still typically depend on a kernel-level driver




Kernel Bypass: F-Stack

* Uses FreeBSD code to build TCP on top of DPDK

* Pros:

O Good-quality code due to BSD-based TCP implementation

O Support various TCP extensions

O POSIX compatibility (but only partial due to lack of multithreading)
* Cons:

O No support for multithreading

O Limited LibC integration

O No NIC sharing across different programs




Joyride's Vision

A Microkernel-Inspired Network Architecture

@ User-Space TCP/IP Processing

FreeBSD's mature stack + kernel-bypass (DPDK) performance

@ Separate TCP stack instance for each application

@ Transparent Application Support

Modified LibC will integrate network-syscall replacements

@® System-Wide Deployment

One service for all apps, no per-application network configuration

@ PennState



Joyride's Architecture




Joyride's Architecture

® App1
High-performance network path via Joyride




Joyride's Architecture

e App1
High-performance network path via Joyride User
space
Kernel
space

@ PennState



Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride User
space
Kernel
space

@ PennState



Joyride's Architecture

APP 1
o App 1 v
High-performance network path via Joyride
Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Kernel
space

@ PennState



Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride U
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel
sSpace

@ PennState



Joyride's Architecture

APP 1
e App1 v
High-performance network path via Joyride U
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

@ PennState



Joyride's Architecture

APP 1
® AppT v
High-performance network path via Joyride T':Jsgztsag( 0
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

@ PennState



Joyride's Architecture

APP 1
® AppT v
High-performance network path via Joyride fgsgztsaz 0
Modified LibC ser
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
Joyride Service Kernel

space

s
ook e
l

@ PennState



Joyride's Architecture

® App1
High-performance network path via Joyride

@ PennState

Joyride Path

APP 1

v
FreeBSD

TCPPStack Mo dified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

High-Performance NIC (100+ Gbps)

User

Kernel
space



Joyride's Architecture

APP 1
* Appf F +BSD
High-performance network path via Joyride ree
TCP/PStack  Modified LibC User
(Transparent Syscall Interception - Routes to Joyride or Kernel) Space
® App2 e
Corner-case applications: fall back to the Joyride Service Kernel

traditional TCP/IP stack space

High-Performance NIC (100+ Gbps)

@ PennState




Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
Corner-case applications: fall back to the
traditional TCP/IP stack

@ PennState

Joyride Path

Legacy Kernel Path
APP 1

v

FreeBSD

TCPPStack Mo dified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

- J

High-Performance NIC (100+ Gbps)

s
oot s
l

User

Kernel
space



Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
Corner-case applications: fall back to the
traditional TCP/IP stack

@ PennState

Joyride Path
Legacy Kernel Path
APP 1
v APP 2
FreeBSD v

TCPIPStack  Modified LibC

(Transparent Syscall Interception - Routes to Joyride or Kernel)

Joyride Service

- J

High-Performance NIC (100+ Gbps)

s
ook e
l

User

Kernel
space



Joyride's Architecture

® App1
High-performance network path via Joyride

® App?2
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Joyride's Architecture
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Single NIC shared transparently across all paths

using SR-IOV and VF (Virtual Functions) High-Performance NIC (100+ Gbps)

Potentially multiple isolated Joyride Services
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Discussion: Security and Isolation

® Privilege Separation:
Network stack runs entirely in user space
Faults and breaches are contained in the network process (Joyride service)
Reduced trusted computing base (potentially fully eliminating Linux's network stack)

e Hardware Sharing:
Virtual Functions (VFs) provide hardware-level isolation for multiple instances
No direct NIC access from applications

® Performance:
Will use fast inter-process communication mechanisms based on shared memory and
scalable data structures
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Preliminary Results: Experimental Setup

Hardware:
AMD EPYC 9005 series (both client and server)
Intel E810 100 Gbps NICs

System:
Ubuntu 22.04
Linux kernel 6.2

Benchmark: ttcp (Linux), a built-in throughput test (DPDK)
Standard ttcp version for blocking socket tests
Custom non-blocking ttcp variant implemented for comparison

(Note: the original ttcp tool did not support the non-blocking mode, we implemented
our own ttcp variant to test performance under the non-blocking mode)
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Preliminary Results |
—e— Blocking Send 8KB Buffer

. ---e--- Blocking Send 256KB Buffer
Aggregate Network Throughput: —+— Non-Blocking Send 8KB Buffer

Non-Blocking Send 256KB Buffer

@ 4-8 cores saturate the link in Linux vs. ——-s-— DPDK Reference

just 1 core with DPDK

100 -
@® Linux's network stack and mode -
switches have a visible performance £ 807
overhead S
= 601
o
@ Buffer-size increases help but £ At
provide only a sublinear improvement §
= 20-
@® Linux's non-blocking version is not
helping much to reduce the overhead 0

1 2 4 8
Number of Processes/Cores
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Future Work

@ Desigh a New TCP Stack and User-Space Server:

Port the most recent FreeBSD TCP/IP code to run over DPDK
Avoid shortcuts made in F-stack

@® LibC Replacement and Integration Layer:
Complete POSIX socket APl coverage with poll/select/epoll/etc

@ Real-Life Tests:

Web servers (Nginx, Apache)
Databases (PostgreSQL, Redis)
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Thank you!

Q&A?

Yanlin Du
duyanlin@psu.edu

Ruslan Nikolaev
rnikola@psu.edu
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