WAIT-FREE MEMORY RECLAMATION AND DATA
STRUCTURES

RUSLAN NIKOLAEV
RESEARCH ASSISTANT PROFESSOR
VIRGINIATECH, SSRG

ABOUT ME

" Worked in industry (Microsoft, Pure Storage)

= JoinedVirginia Tech, Electrical and Computer Engineering Department in 2017 as a Research Assistant
Professor

= Working on different projects in systems and concurrency
= Have research publications at SOSP, VEE, PODC, DISC, and PPoPP

= Today’s talk partially overlaps with my recent PPoPP "20 publication “Universal Wait-Free Memory
Reclamation”, which is co-authored with Prof. Binoy Ravindran from Virginia Tech

CONCURRENT DATA STRUCTURES

= Many-core systems today require efficient access to data

= Concurrent data structures

= Multiple threads need to safely manipulate data structures (similar to sequential data structures)

= “nothing bad will happen” Th:fad Thgead Thgead

= Concurrency also adds a liveness property, which stipulates how threads will be able to make
progress

‘ . . ' Thread Thread Thread
= “something good will happen eventually A B C

NON-BLOCKING PROGRESS GUARANTEES

= Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation
from other threads

" [ock-free: at least one thread always makes progress in a finite number of steps

= Wait-free: all threads make progress in a finite number of steps

NON-BLOCKING PROGRESS GUARANTEES

= Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation
from other threads

" [ock-free:at least one thread always makes progress in a finite number of steps

= Wiait-free: all threads make progress in a finite number of steps

= Wait-freedom is the strongest form of non-blocking progress

= Wait-free algorithms are gaining more practical relevance and efficiency (Kogan and Petrank’s fast-path-
slow-path methodology, see [PPoPP ’12])

= CAS (compare-and-swap) is used universally in lock-free and wait-free algorithms :

= F&A (fetch-and-add) is often available as a specialized instruction

MEMORY RECLAMATION PROBLEM

Thread A Thread B Thread C
|

|

|

|

|
Delete P

One thread wants to de-allocate a memory block which 6
is still reachable by concurrent threads

MEMORY RECLAMATION PROBLEM

Thread A Thread B Threaltd C
| |

|

|

|

|

|
Delete P

|
|

SEGFAULT!

Dereference P

SEGFAULT!

One thread wants to de-allocate a memory block which 7
is still reachable by concurrent threads

TREIBER’S LOCK-FREE STACK

Top

Next
nullptr

| | |
Object 3 Object 2 Object |

= PUSH and POP operations are implemented by updating Top using CAS

TREIBER’S LOCK-FREE STACK

Top

Next
nullptr

l I l l
Object 4 Object 3 Object 2 Object |

= PUSH and POP operations are implemented by updating Top using CAS

TREIBER’S LOCK-FREE STACK

nullptr

l | l I
Object 4 Object 3 Object 2 Object |

= PUSH and POP operations are implemented by updating Top using CAS

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(..);
node->obj = obj;
while (true) {
node->next = Top;
if (CAS(&Top, node->next, node))
break;

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;

Object* POP() {
Object* obj = nullptr;
while (true) {
Node* node = Top;
if (node == nullptr)
break;
if (CAS(&Top, node, node->next) {
obj = node->obj;
[delete node]

PUSH(Object* obj) {
Node* node = malloc(..);
node->obj = obj;
while (true) {

break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break;

return obj; 3

RECYCLING ELEMENTS

= [f we can avoid returning memory to the OS, the simplest approach is to recycle elements
= With simple data structures (such as Treiber’s stack) we can easily do so but

" When calling POP, the same pointer value may point to an already recycled element

® The problem is known as “the ABA problem” and leads to the data structure corruption

= Can be solved by using a “tag”, which is adjacent to the stack top pointer and incremented each time; the tag
uniquely identifies the object

" Need to use WCAS (wide CAS), i.e., cmpxchg|6b for x86-64

EXAMPLE: RECYCLING ELEMENTS

struct Node { Object* POP() {
Node* next; // Next element Object* obj = nullptr;
Object* obj; // Stored object while (true) {
}s Node* node = Top.Pointer;
<Node*,Int> Top = { nullptr, 0 }; if (node == nullptr)
break;
PUSH(Object* obj) { if (WCAS(&Top,
Node* node = [allocate node | { node, Top.Tag }
node->obj = obj; { node->next, Top.Tag+l }))
while (true) { obj = node->obj;
node->next = Top.Pointer; [recycle node]
if (WCAS(&Top, break;
{ node->next, Top.Tag }, }
{ node, Top.Tag+l })) } s
break; return obj;

} o} }

MORE GENERAL SOLUTION

= Need to postpone de-allocation of this memory block until it is safe to do so
= But memory usage must be bounded for non-blocking progress guarantees
= Wait-free reclamation is especially difficult
" No universal wait-free memory reclamation scheme existed for hand-crafted data structures until recently

® The fast-path-slow-path [PPoPP ’|2] methodology cannot be applied to reclamation directly

QUESTIONS!?

EPOCH-BASED RECLAMATION (EBR)

= Uses a global epoch counter (aka “era” in other algorithms)
= As part of per-thread state, each thread keeps a reservation

= Many variations of EBR exist, which differ on how to increment the epoch counter (conditionally vs.
unconditionally) and when to trigger memory reclamation

= For the original EBR only 3 distinct epoch values are needed
= As an example, consider a variant with unconditional epoch increments presented in [PPoPP ’ 18]

reservations:

Thread | P2l
Thread 2 |l
I EM [epoch'="2]
Thread 4 s

global_epoch =2

EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
= When beginning, a thread records the current global epoch value to its reservation

= When ending, the thread resets its reservation

EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped

= When beginning, a thread records the current global epoch value to its reservation

= When ending, the thread resets its reservation

PUSH_EBR(Object* obj) { Object* POP_EBR() {
begin_op(); begin_op();
PUSH(obj); Object* obj = POP();
end_op(); end_op();

} return obj;

20

EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
= When beginning, a thread records the current global epoch value to its reservation

= When ending, the thread resets its reservation

global_epoch =2

begin_op() {
reservations[TID] = global epoch; mmmdll [cpoch = 2]
}

21

EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
= When beginning, a thread records the current global epoch value to its reservation

= When ending, the thread resets its reservation

global_epoch =2

begin_op() {

reservations[TID] = global epoch; mmmdll [cpoch = 2]
}
end_op() {

ﬁ

reservations[TID] = o;

¥

22

EPOCH-BASED RECLAMATION (EBR)

= When deleting, postpone the actual deallocation by retiring a memory block

Thread 3’s

Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a
thread-local list

Periodically increment the global epoch counter when retiring

Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch
at the moment of retirement is past all reservation values across all threads
reservations:

global_epoch =2

[N [epoch =T]
LA [epoch =]
[retire=2] [retire=2] [retire=1] [retire=0] Thread 3 | Eeleis A

Thread 4 |IEeldisad

23

EPOCH-BASED RECLAMATION (EBR)

= When deleting, postpone the actual deallocation by retiring a memory block

= Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a
thread-local list

= Periodically increment the global epoch counter when retiring

" Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch
at the moment of retirement is past all reservation values across all threads
reservations:

global_epoch =2

<R [epoch= "]

Thread 3’s Thread 2 |l iiasd
list [retire=2] [retire=2] [retire=1] [retire=0] Y r Kkl [epoch = 2]

Thread 4 |IEeldisad

can be deleted

24

EBR SUMMARY

= EBR tracks memory using “epochs”

= Simple API

= Very fast, especially when finding a good balance of how frequently retired nodes need to be scanned
= The scheme is blocking

= |f one thread is stuck and never calls end_op(), an unbounded number of blocks can be allocated and never
deleted

= Memory usage is thus unbounded

= The program can eventually crash when memory is exhausted

25

HAZARD POINTERS

= Originally published in [TPDS *04]

" Wrap all pointer dereferences
= Reservations keep pointers rather than epochs
= Since a thread may reserve multiple pointers, several reservations per thread are needed
= An index identifies a specific reservation in a thread

" When retiring a block, put it in a thread-local list

" Periodically scan the list to check if any of the retired block pointers do not overlap with reservations across
all threads

® Deallocate such blocks

26

EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 27
} return obj;

EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get_protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 28
} return obj;

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
= get_protected(): safely retrieve a pointer to while (true) {
the protected object by creating a reservation Node* node =
get_protected(&Top, 0);
if (node == nullptr)

break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 2

} return obj;

EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 30
} return obj;

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
= retire(): mark an object for deletion Object* obj = nullptr;
while (true) {

= the retired object must be deleted from the data

structure first, i.e., only in-flight threads can still Node* node =
access it get_protected(&Top, 0);
if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 3
} return obj;

EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 2
} return obj;

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
= clear(): reset all prior reservations made by the while (true) {
current thread in get_protected() Node* node =
get protected(&Top, 0);
if (node == nullptr)

break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 3

} return obj;

HAZARD POINTERS' SUMMARY

= Hazard Pointers track memory blocks using pointers

" Lock-free in general

® |n certain cases can be used in wait-free manner

= Typically much slower than EBR

34

COMBINATION OF EBR AND HAZARD POINTERS

= Combine EBR and Hazard Pointers
= Use epochs (or “eras”) for reservations, as in EBR (64-bit values)
" Wrap all pointer dereferences, as in Hazard Pointers, using get_protected()
"= When allocating blocks, initialize them with the current global epoch value

= Each block records an interval (“allocation” and “retire” epochs)

= To safely delete a block, its interval must not overlap with all reservations

35

COMBINATION OF EBR AND HAZARD POINTERS

= Hazard Eras [SPAA 7]

= APl is mostly compatible with Hazard Pointers, except when allocating memory blocks

= Generally much faster than Hazard Pointers

= [nterval-Based Reclamation (IBR) [PPoPP ’18]

= Simpler EBR-like API, but data structures need to modified to restart operations for starving threads

= Turns out that Hazard Eras (unlike Hazard Pointers) can be modified to guarantee wait-freedom

" Wait-Free Eras (WFE) [PPoPP ’20] is based on Hazard Eras but is wait-free

36

HAZARD ERAS’ APl CHANGES

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = alloc_block(); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 37
} return obj;

HAZARD ERAS’ APl CHANGES

= alloc_block(): allocate and initialize a memory ODjEC‘l':* POP() .{
block Object* obj = nullptr;
while (true) {

" Wraps malloc() Node* node =

= Not in the original Hazard Pointers scheme but in get_protected(&Top, 9);
Hazard Eras and WFE if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = alloc_block(); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 38

} return obj;

OTHER MEMORY RECLAMATION SCHEMES

= Schemes based on lock-free garbage collection

= Can be unsuitable for C++, especially when using low-level programming models

= Schemes that rely on certain OS primitives or mechanisms

= QSense [SPAA '16], DEBRA+ [PODC ’15]

= Can be convenient for user-space programs but problematic for kernel-space code or for strict non-blocking

guarantees since typical OSes use locks

39

IMPORTANCE OF APl FOR NON-BLOCKING PROGRESS

= [BR’s APl is similar to that of EBR, except it additionally wraps pointer dereferences (no indices
needed)

= Relatively simple, can be hidden inside smart pointers

= Not always memory-bounded, e.g., when having starving threads

® The Hazard Eras’ and WFE’s APIs are based on Hazard Pointers’ API

" Hazard Pointers’s APl is carefully designed to make sure that a finite number of blocks are reserved (i.e.,
protected from reclamation)

40

QUESTIONS!?

WAIT-FREEDOM CHALLENGE

struct Node { Object* POP() {

Reclamation header; Object* obj = nullptr;

Node* next; // Next element while (true) {

Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)

. . break;

PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = alloc block();

obj = node->obj;

node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); a
} return obj;

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global era = 0;
retire(Node* node) {
Node* get protected(Node** ptr, int indx) { .
int prev = reservations[tid][indx]; increment_era();
while (true) {
Node* ret = *ptr; }
int new = global era;
if (prev == new) increment_era() {
return ret; F&A(&global era, 1);
reservations[tid][indx] = new; }
prev = new;

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global era = 0;
retire(Node* node) {
Node* get protected(Node** ptr, int indx) { .
int prev = reservations[tid][indx]; increment_era();

while (true) {
Node* ret = *ptr; }
int new = global era;
if (prev == new) increment_era() {
return ret; F&A(&global_era, 1);
reservations[tid][indx] = new; }
prev = new;

TIMNAT AND PETRANK’S FORMULATION

= [PPoPP ’14] proposed a method to automatically convert lock-free data structures into wait-free ones
® The original lock-free data structure needs to be written in a “normalized” form
" Normalized data structures are defined in [PPoPP ’14]

" One of the key requirements is “Any modification of the shared data structure is executed using a CAS operation”

= Operations can be restarted if things go wrong, therefore get_protected() does not need to be
unbounded

= Examples include [PPoPP ’17]’s implementations of CRTurnQueue and KPQueue using Hazard Pointers

45

WAIT-FREE ERAS (WFE)

= Although wait-free reclamation is feasible in special cases, it is much harder to guarantee for arbitrary
formulated wait-free data structures

= Specialized instructions such as F&A can still be useful in wait-free data structures for performance reasons

= Even CAS-only wait-free data structures are not necessarily derived from “normalized” form

= Our recent [PPoPP "20] publication,Wait-Free Eras (VWFE), solves wait-free memory reclamation for a
more general case

46

WAIT-FREE ERAS (WFE)

= Bird’s-eye view
m Use a fast-path-slow-path method for get_protected()

= retire() increments the global era (or alternatively alloc_block()): it calls a helper method before
incrementing the era clock

" Wiit-free consensus is achieved with the help of

= F&A:available on x86-64 and AArché4 as of v8.1 and suitable for wait-free algorithms due to bounded
execution time

= WCAS:also available on x86-64 and AArché4

47

WAIT-FREE ERAS (WFE)

increment_era() in

get_protected fast() retire()

Scan all state entries

get_protected_slow() state: to find requests
Thread | result |
Thread 2 result 2

Request help through Thread 3
per-thread state

Gather output

result 3
Thread 4 result 4

help_thread()

F&A(global _era, I) "

WAIT-FREE ERAS (WFE)

" [ntroduce tags to identify slow-path cycles

" Per-thread state: result is used for both input and output

They prevent spurious (belated) updates

Use pairs for result { .A, .B }

= Reservations also use pairs { .A, .B }

Two special reservations for helpers (maxHEs, maxHEs+1),
i.e., the total number is maxHEs+?2

A B
Input 'invptr| tag

state.result [
Output: | block *| era

reservations
A B

era tag
era @ tag

49

WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

50

WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

// Try retrieving a pointer in a loop

51

WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;

state[tid][indx].result = { invptr, tag };

// Try retrieving a pointer in a loop

if (result.A != invptr) {
int era = result.B;
reservations[tid][indx].A = era;
reservations[tid][indx].B = tag+l;
return result.A;

52

WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int pair result = state[i][j].result;

if (result.A != invptr)
return;

int era = state[i][j].era;

reservations[tid][maxHEs].era = era;

block** ptr = state[i][]j].ptr;

int tag = reservations[i][j].B;

if (result.B != tag) {
reservations[tid][maxHEs].era =
return;

53

WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int prev = global era;

do {
reservations[tid][maxHEs+1].A = prev;
block* ret ptr = *ptr;
int new = global era;

if (prev == new) {
// DONE! Can produce the result
break;

}

prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1l].era = ;
reservations[tid][maxHEs].era = o;

54

WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int prev = global era;

do {
reservations[tid][maxHEs+1].A = prev;
block* ret ptr = *ptr;
int new = global era;

if (prev == new) {
// DONE! Can produce the result
break;

}

prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1l].era = ;
reservations[tid][maxHEs].era = o;

55

WAIT-FREE ERAS (WFE)

= Avoiding race conditions when scanning deleted nodes
® Check reservations 0..maxHEs- |
® Check reservations maxHEs, maxHEs+ |

® Check reservations 0..maxHEs-1| again

56

EVALUATION

" 4x24 Intel Xeon E7-8890 v4 (2.20GHz) 256GB RAM, GCC 8.3.0 with -O3

= Using the benchmark from IBR/PPoPP’|8 (by Wen et al.) comparing:
= Wait-Free Eras (WFE) [PPoPP "20]
= Hazard Eras (HE) [SPAA ’17]
® Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’|8]
= Epoch-Based Reclamation (EBR)
® Hazard Pointers (HP) [TPDS ’04]

= No reclamation (Leak Memory)

= Results are for write-intensive (50% insert, 50% delete) tests

= See WFE/PPoPP 20 for read-mostly (90% get, 10% put) results 7

Mops / second

EVALUATION: KOGAN AND PETRANK’S WAIT-FREE QUEUE

2.0-

A WFE © HE 2GEIBR |
> EBR < HP 4 Leak Menhory

|

! |

! |

| I
1.5: |
' !

! |
1.0~ |
| |

! |
0.5- [
| |
0.0~)

...

1 8 16 24 32 40 48 56 64 72 80 88 96 104112120
Number of Threads

Number of Unreclaimed Objects

800+ A WFE © HE 2GEIBR |
: > EBR % HP I
l 7
: ! ’
600- ;’ >
A
l M
400+ i1
]). -‘.
| .'- \I‘ | l
| _,' \\I !I.j: :
200- - > |

E ‘\fﬁ'*“*ﬁ-—-ﬁw

0'><><><><><><><><><><><><>l<><><><5

1 8 16 24 32 40 48 56 64 72 80 838 96 104 112120

Number of Threads
58

EVALUATION: CRTURN WAIT-FREE QUEUE

A WFE & HE 2GEIBR
> EBR < HP 4 Leak Memory

4000+

Mops / second
N

2000~

Number of Unreclaimed Objects

lf

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112120 178716724 32 40 48 56 64 72 80 88 96 104112120
Number of Threads Number of Threads 5

Mops / second

EVALUATION: SORTED LOCK-FREE LINKED LIST

A WFE © HE - 2GEIBR ' ' | A WFE © HE / 2GEIBR |
> EBR > HP @ Leak Memory T : > EBR < HP !
: . © 1500 I
0.094) O :
| o _—E ! O ,-’:f_ > ;‘-..
O P N Lad LA
l GEJ ' AN A :, >
: " 1000 —— '
006': : B : ’ -~ vy ' =
' : E ? \-‘ .II l
C / = |
. 2 ! I
0.03! O s 'S 500; |
: VGRS ' @ : '
' = X X x [FQ |
. /- Je- X I | g
5 X) |
0.00- #/:;(. = 0

..

1 8 16 24 32 40 48 56 64 72 80 88 96 104112120 77816 24 35 40 48 56 64 72 80 88 96 104115120
Number of Threads Number of Threads

60

EVALUATION: LOCK-FREE HASH MAP

. & WFE © HE /= 2GEIBR ' -, 15000 A WFE © HE 2GEBR ! |
: > EBR % HP 4 Leak Memory s | > EBR < HP : > |
|) : oo
:) ! I :
100 O | ' A
o) ! e i 7 :
c . " @ 10000: | ; .
3 | - E | | ? |
! ! - ! ! !
UJ I I 0 [} ."l]
—_— :) @D [l K 1
UJ ! k : = : l ‘_i :
S 50! . = : 3 |
= ! - = 5000 i !
. \ s : |
: B : |
: | G%é::’@ 8 !)i
| B N T IS G O b SISV VR = |)
| | Z ! '
0+ I . 01 - -
778 16 24 32 40 43 56 64 72 80 88 96 104112120 178 16 54732 40 43 56 64 72 80 88 96 104112120
Number of Threads Number of Threads

6l

EVALUATION: LOCK-FREE NATARAJAN TREE

A WFE © HE / 2GEIBR l | ! A WFE © HE / 2GEIBR
> EBR ¥ HP 4 Leak Memory | ' 4000- > EBR < HP

3000+

2000

Mops / second
Number of Unreclaimed Objects

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 77816 24 32 40 48 56 64 72 80 88 96 104112120
Number of Threads Number of Threads

62

CONCLUSIONS

= Concurrent data structures require careful consideration of the memory reclamation problem
= Memory reclamation itself is subject to progress guarantee requirements

" W’ait-free reclamation is feasible through VWFE
= Opens the way for wide adoption of wait-free data structures
® The only remaining obstacle is efficient wait-free allocation and deallocation

= Can spur further research in wait-free reclamation

63

AVAILABILITY

= My personal website

m https://rusnikola.github.io

= WFE’s code

m https://github.com/rusnikola/wfe

64

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

AVAILABILITY

= My personal website
m https://rusnikola.github.io

= WHFFE’s code THANKYOU!

m https://github.com/rusnikola/wfe

65

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

