
WAIT-FREE MEMORY RECLAMATION AND DATA

STRUCTURES

RUSLAN NIKOLAEV

RESEARCH ASSISTANT PROFESSOR

VIRGINIA TECH, SSRG

ABOUT ME

 Worked in industry (Microsoft, Pure Storage)

 Joined Virginia Tech, Electrical and Computer Engineering Department in 2017 as a Research Assistant

Professor

 Working on different projects in systems and concurrency

 Have research publications at SOSP, VEE, PODC, DISC, and PPoPP

 Today’s talk partially overlaps with my recent PPoPP ’20 publication “Universal Wait-Free Memory

Reclamation”, which is co-authored with Prof. Binoy Ravindran from Virginia Tech

2

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data structures)

 “nothing bad will happen”

 Concurrency also adds a liveness property, which stipulates how threads will be able to make

progress

 “something good will happen eventually”
Thread

A
Thread

B
Thread

C

Thread
A

Thread
B

Thread
C

3

NON-BLOCKING PROGRESS GUARANTEES

 Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation

from other threads

 Lock-free: at least one thread always makes progress in a finite number of steps

 Wait-free: all threads make progress in a finite number of steps

4

NON-BLOCKING PROGRESS GUARANTEES

 Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation

from other threads

 Lock-free: at least one thread always makes progress in a finite number of steps

 Wait-free: all threads make progress in a finite number of steps

 Wait-freedom is the strongest form of non-blocking progress

 Wait-free algorithms are gaining more practical relevance and efficiency (Kogan and Petrank’s fast-path-

slow-path methodology, see [PPoPP ’12])

 CAS (compare-and-swap) is used universally in lock-free and wait-free algorithms

 F&A (fetch-and-add) is often available as a specialized instruction

5

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

One thread wants to de-allocate a memory block which

is still reachable by concurrent threads

6

MEMORY RECLAMATION PROBLEM

Dereference P

Delete P

Dereference P

Thread A Thread B Thread C

SEGFAULT!

SEGFAULT!

One thread wants to de-allocate a memory block which

is still reachable by concurrent threads

7

TREIBER’S LOCK-FREE STACK

3 2 1
Next Next Next

Object 3 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS
8

nullptr

Top

TREIBER’S LOCK-FREE STACK

3 2 1
Next Next Next

Object 3 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS

4

Object 4

Next

9

nullptr

Top

TREIBER’S LOCK-FREE STACK

4 2 1 nullptr

Top

Next Next Next

Object 4 Object 2 Object 1

 PUSH and POP operations are implemented by updating Top using CAS

3
Next

Object 3

10

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

11

EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

12

EXAMPLE: NO RECLAMATION

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node = Top;
if (node == nullptr)

break;
if (CAS(&Top, node, node->next) {

obj = node->obj;
[delete node]
break;

}
}
return obj;

}

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

13

RECYCLING ELEMENTS

 If we can avoid returning memory to the OS, the simplest approach is to recycle elements

 With simple data structures (such as Treiber’s stack) we can easily do so but

 When calling POP, the same pointer value may point to an already recycled element

 The problem is known as “the ABA problem” and leads to the data structure corruption

 Can be solved by using a “tag”, which is adjacent to the stack top pointer and incremented each time; the tag

uniquely identifies the object

 Need to use WCAS (wide CAS), i.e., cmpxchg16b for x86-64

14

EXAMPLE: RECYCLING ELEMENTS

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node = Top.Pointer;
if (node == nullptr)

break;
if (WCAS(&Top,

{ node, Top.Tag }
{ node->next, Top.Tag+1 })) {

obj = node->obj;
[recycle node]
break;

}
}
return obj;

}

struct Node {
Node* next; // Next element
Object* obj; // Stored object

};
<Node*,Int> Top = { nullptr, 0 };

PUSH(Object* obj) {
Node* node = [allocate node]
node->obj = obj;
while (true) {

node->next = Top.Pointer;
if (WCAS(&Top,

{ node->next, Top.Tag },
{ node, Top.Tag+1 }))

break;
} }

15

MORE GENERAL SOLUTION

 Need to postpone de-allocation of this memory block until it is safe to do so

 But memory usage must be bounded for non-blocking progress guarantees

 Wait-free reclamation is especially difficult

 No universal wait-free memory reclamation scheme existed for hand-crafted data structures until recently

 The fast-path-slow-path [PPoPP ’12] methodology cannot be applied to reclamation directly

16

17

QUESTIONS?

EPOCH-BASED RECLAMATION (EBR)

 Uses a global epoch counter (aka “era” in other algorithms)

 As part of per-thread state, each thread keeps a reservation

 Many variations of EBR exist, which differ on how to increment the epoch counter (conditionally vs.

unconditionally) and when to trigger memory reclamation

 For the original EBR only 3 distinct epoch values are needed

 As an example, consider a variant with unconditional epoch increments presented in [PPoPP ’18]

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

global_epoch = 2

reservations:

18

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

19

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

PUSH_EBR(Object* obj) {
begin_op();
PUSH(obj);
end_op();

}

Object* POP_EBR() {
begin_op();
Object* obj = POP();
end_op();
return obj;

}

20

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

begin_op() {
reservations[TID] = global_epoch;

}

[epoch = 2][epoch = ∞]

global_epoch = 2

21

EPOCH-BASED RECLAMATION (EBR)

 Each data structure operation is wrapped

 When beginning, a thread records the current global epoch value to its reservation

 When ending, the thread resets its reservation

begin_op() {
reservations[TID] = global_epoch;

}

end_op() {
reservations[TID] = ∞;

}

[epoch = 2][epoch = ∞]

global_epoch = 2

[epoch = 2] [epoch = ∞]

22

EPOCH-BASED RECLAMATION (EBR)

 When deleting, postpone the actual deallocation by retiring a memory block

 Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a

thread-local list

 Periodically increment the global epoch counter when retiring

 Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch

at the moment of retirement is past all reservation values across all threads

[retire=2] [retire=2]

global_epoch = 2

[retire=1] [retire=0]

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

reservations:

Thread 3’s

list

23

EPOCH-BASED RECLAMATION (EBR)

 When deleting, postpone the actual deallocation by retiring a memory block

 Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a

thread-local list

 Periodically increment the global epoch counter when retiring

 Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch

at the moment of retirement is past all reservation values across all threads

can be deleted 24

[retire=2] [retire=2]

global_epoch = 2

[retire=1] [retire=0]
Thread 3’s

list

[epoch = 1]

[epoch = ∞]

[epoch = 2]

[epoch = ∞]

Thread 1

Thread 2

Thread 3

Thread 4

reservations:

EBR SUMMARY

 EBR tracks memory using “epochs”

 Simple API

 Very fast, especially when finding a good balance of how frequently retired nodes need to be scanned

 The scheme is blocking

 If one thread is stuck and never calls end_op(), an unbounded number of blocks can be allocated and never

deleted

 Memory usage is thus unbounded

 The program can eventually crash when memory is exhausted

25

HAZARD POINTERS

 Originally published in [TPDS ’04]

 Wrap all pointer dereferences

 Reservations keep pointers rather than epochs

 Since a thread may reserve multiple pointers, several reservations per thread are needed

 An index identifies a specific reservation in a thread

 When retiring a block, put it in a thread-local list

 Periodically scan the list to check if any of the retired block pointers do not overlap with reservations across

all threads

 Deallocate such blocks

26

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

27

EXAMPLE: HAZARD POINTERS’ API

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

28

EXAMPLE: HAZARD POINTERS’ API

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

 get_protected(): safely retrieve a pointer to

the protected object by creating a reservation

29

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

30

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 retire(): mark an object for deletion

 the retired object must be deleted from the data

structure first, i.e., only in-flight threads can still

access it

31

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

32

EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(…);
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 clear(): reset all prior reservations made by the

current thread in get_protected()

33

HAZARD POINTERS’ SUMMARY

 Hazard Pointers track memory blocks using pointers

 Lock-free in general

 In certain cases can be used in wait-free manner

 Typically much slower than EBR

34

COMBINATION OF EBR AND HAZARD POINTERS

 Combine EBR and Hazard Pointers

 Use epochs (or “eras”) for reservations, as in EBR (64-bit values)

 Wrap all pointer dereferences, as in Hazard Pointers, using get_protected()

 When allocating blocks, initialize them with the current global epoch value

 Each block records an interval (“allocation” and “retire” epochs)

 To safely delete a block, its interval must not overlap with all reservations

35

COMBINATION OF EBR AND HAZARD POINTERS

 Hazard Eras [SPAA ’17]

 API is mostly compatible with Hazard Pointers, except when allocating memory blocks

 Generally much faster than Hazard Pointers

 Interval-Based Reclamation (IBR) [PPoPP ’18]

 Simpler EBR-like API, but data structures need to modified to restart operations for starving threads

 Turns out that Hazard Eras (unlike Hazard Pointers) can be modified to guarantee wait-freedom

 Wait-Free Eras (WFE) [PPoPP ’20] is based on Hazard Eras but is wait-free

36

HAZARD ERAS’ API CHANGES

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

37

HAZARD ERAS’ API CHANGES

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

 alloc_block(): allocate and initialize a memory

block

 Wraps malloc()

 Not in the original Hazard Pointers scheme but in

Hazard Eras and WFE

38

OTHER MEMORY RECLAMATION SCHEMES

 Schemes based on lock-free garbage collection

 Can be unsuitable for C++, especially when using low-level programming models

 Schemes that rely on certain OS primitives or mechanisms

 QSense [SPAA ’16], DEBRA+ [PODC ’15]

 Can be convenient for user-space programs but problematic for kernel-space code or for strict non-blocking

guarantees since typical OSes use locks

39

IMPORTANCE OF API FOR NON-BLOCKING PROGRESS

 IBR’s API is similar to that of EBR, except it additionally wraps pointer dereferences (no indices

needed)

 Relatively simple, can be hidden inside smart pointers

 Not always memory-bounded, e.g., when having starving threads

 The Hazard Eras’ and WFE’s APIs are based on Hazard Pointers’ API

 Hazard Pointers’s API is carefully designed to make sure that a finite number of blocks are reserved (i.e.,

protected from reclamation)

40

41

QUESTIONS?

WAIT-FREEDOM CHALLENGE

Object* POP() {
Object* obj = nullptr;
while (true) {

Node* node =
get_protected(&Top, 0);

if (node == nullptr)
break;

if (CAS(&Top, node, node->next) {
obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

struct Node {
Reclamation header;
Node* next; // Next element
Object* obj; // Stored object

};
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = alloc_block();
node->obj = obj;
while (true) {

node->next = Top;
if (CAS(&Top, node->next, node))

break;
}

}

42

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global_era = 0;

Node* get_protected(Node** ptr, int indx) {
int prev = reservations[tid][indx];
while (true) {

Node* ret = *ptr;
int new = global_era;
if (prev == new)

return ret;
reservations[tid][indx] = new;
prev = new;

}
}

retire(Node* node) {
…
increment_era();
…

}

increment_era() {
F&A(&global_era, 1);

}

43

WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global_era = 0;

Node* get_protected(Node** ptr, int indx) {
int prev = reservations[tid][indx];
while (true) {

Node* ret = *ptr;
int new = global_era;
if (prev == new)

return ret;
reservations[tid][indx] = new;
prev = new;

}
}

retire(Node* node) {
…
increment_era();
…

}

increment_era() {
F&A(&global_era, 1);

}

44

TIMNAT AND PETRANK’S FORMULATION

 [PPoPP ’14] proposed a method to automatically convert lock-free data structures into wait-free ones

 The original lock-free data structure needs to be written in a “normalized” form

 Normalized data structures are defined in [PPoPP ’14]

 One of the key requirements is “Any modification of the shared data structure is executed using a CAS operation”

 Operations can be restarted if things go wrong, therefore get_protected() does not need to be

unbounded

 Examples include [PPoPP ’17]’s implementations of CRTurnQueue and KPQueue using Hazard Pointers

45

WAIT-FREE ERAS (WFE)

 Although wait-free reclamation is feasible in special cases, it is much harder to guarantee for arbitrary

formulated wait-free data structures

 Specialized instructions such as F&A can still be useful in wait-free data structures for performance reasons

 Even CAS-only wait-free data structures are not necessarily derived from “normalized” form

 Our recent [PPoPP ’20] publication, Wait-Free Eras (WFE), solves wait-free memory reclamation for a

more general case

46

WAIT-FREE ERAS (WFE)

 Bird’s-eye view

 Use a fast-path-slow-path method for get_protected()

 retire() increments the global era (or alternatively alloc_block()): it calls a helper method before

incrementing the era clock

 Wait-free consensus is achieved with the help of

 F&A: available on x86-64 and AArch64 as of v8.1 and suitable for wait-free algorithms due to bounded

execution time

 WCAS: also available on x86-64 and AArch64

47

WAIT-FREE ERAS (WFE)

get_protected_fast()

Request help through

per-thread state

increment_era() in

retire()

help_thread()

result 1

result 2

result 3

result 4

Thread 1

Thread 2

Thread 3

Thread 4

state:get_protected_slow()
Scan all state entries

to find requests

F&A(global_era, 1)Gather output 48

WAIT-FREE ERAS (WFE)

 Introduce tags to identify slow-path cycles

 They prevent spurious (belated) updates

 Per-thread state: result is used for both input and output

 Use pairs for result { .A, .B }

 Reservations also use pairs { .A, .B }

 Two special reservations for helpers (maxHEs, maxHEs+1),

i.e., the total number is maxHEs+2

49

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

50

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };
…
// Try retrieving a pointer in a loop

51

WAIT-FREE ERAS (WFE)

block* get_protected_slow(block** ptr, int indx, block* parent) {
int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };
…
// Try retrieving a pointer in a loop
…
if (result.A != invptr) {

int era = result.B;
reservations[tid][indx].A = era;
reservations[tid][indx].B = tag+1;
return result.A;

} }

52

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
int_pair result = state[i][j].result;
if (result.A != invptr)

return;
int era = state[i][j].era;
reservations[tid][maxHEs].era = era;
block** ptr = state[i][j].ptr;
int tag = reservations[i][j].B;
if (result.B != tag) {

reservations[tid][maxHEs].era = ∞;
return;

}
…

}

53

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
…
int prev = global_era;
do {

reservations[tid][maxHEs+1].A = prev;
block* ret_ptr = *ptr;
int new = global_era;
if (prev == new) {

// DONE! Can produce the result
break;

}
prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1].era = ∞;
reservations[tid][maxHEs].era = ∞;

}

54

WAIT-FREE ERAS (WFE)

help_thread(int i, int j, int tid) {
…
int prev = global_era;
do {

reservations[tid][maxHEs+1].A = prev;
block* ret_ptr = *ptr;
int new = global_era;
if (prev == new) {

// DONE! Can produce the result
break;

}
prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1].era = ∞;
reservations[tid][maxHEs].era = ∞;

}

55

WAIT-FREE ERAS (WFE)

 Avoiding race conditions when scanning deleted nodes

 Check reservations 0..maxHEs-1

 Check reservations maxHEs, maxHEs+1

 Check reservations 0..maxHEs-1 again

56

EVALUATION

 4x24 Intel Xeon E7-8890 v4 (2.20GHz) 256GB RAM, GCC 8.3.0 with -O3

 Using the benchmark from IBR/PPoPP ’18 (by Wen et al.) comparing:

 Wait-Free Eras (WFE) [PPoPP ’20]

 Hazard Eras (HE) [SPAA ’17]

 Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’18]

 Epoch-Based Reclamation (EBR)

 Hazard Pointers (HP) [TPDS ’04]

 No reclamation (Leak Memory)

 Results are for write-intensive (50% insert, 50% delete) tests

 See WFE/PPoPP ’20 for read-mostly (90% get, 10% put) results 57

EVALUATION: KOGAN AND PETRANK’S WAIT-FREE QUEUE

58

EVALUATION: CRTURN WAIT-FREE QUEUE

59

EVALUATION: SORTED LOCK-FREE LINKED LIST

60

EVALUATION: LOCK-FREE HASH MAP

61

EVALUATION: LOCK-FREE NATARAJAN TREE

62

CONCLUSIONS

 Concurrent data structures require careful consideration of the memory reclamation problem

 Memory reclamation itself is subject to progress guarantee requirements

 Wait-free reclamation is feasible through WFE

 Opens the way for wide adoption of wait-free data structures

 The only remaining obstacle is efficient wait-free allocation and deallocation

 Can spur further research in wait-free reclamation

63

AVAILABILITY

 My personal website

 https://rusnikola.github.io

 WFE’s code

 https://github.com/rusnikola/wfe

64

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

AVAILABILITY

 My personal website

 https://rusnikola.github.io

 WFE’s code

 https://github.com/rusnikola/wfe
THANK YOU!

65

https://rusnikola.github.io/
https://github.com/rusnikola/wfe

