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ABOUT ME

" Worked in industry (Microsoft, Pure Storage)

= JoinedVirginia Tech, Electrical and Computer Engineering Department in 2017 as a Research Assistant
Professor

=  Working on different projects in systems and concurrency
= Have research publications at SOSP, VEE, PODC, DISC, and PPoPP

= Today’s talk partially overlaps with my recent PPoPP "20 publication “Universal Wait-Free Memory
Reclamation”, which is co-authored with Prof. Binoy Ravindran from Virginia Tech



CONCURRENT DATA STRUCTURES

= Many-core systems today require efficient access to data

= Concurrent data structures

= Multiple threads need to safely manipulate data structures (similar to sequential data structures)

= “nothing bad will happen” Th:fad Thgead Thgead

= Concurrency also adds a liveness property, which stipulates how threads will be able to make
progress

‘ . . ' Thread Thread Thread
= “something good will happen eventually A B C




NON-BLOCKING PROGRESS GUARANTEES

= Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation
from other threads

" [ ock-free: at least one thread always makes progress in a finite number of steps

=  Wait-free: all threads make progress in a finite number of steps



NON-BLOCKING PROGRESS GUARANTEES

= Obstruction-free: a thread performs an operation in a finite number of steps if executed in isolation
from other threads

" [ ock-free:at least one thread always makes progress in a finite number of steps

=  Wiait-free: all threads make progress in a finite number of steps

=  Wait-freedom is the strongest form of non-blocking progress

= Wait-free algorithms are gaining more practical relevance and efficiency (Kogan and Petrank’s fast-path-
slow-path methodology, see [PPoPP ’12])

= CAS (compare-and-swap) is used universally in lock-free and wait-free algorithms :

= F&A (fetch-and-add) is often available as a specialized instruction



MEMORY RECLAMATION PROBLEM

Thread A Thread B Thread C
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Delete P

One thread wants to de-allocate a memory block which 6
is still reachable by concurrent threads



MEMORY RECLAMATION PROBLEM
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SEGFAULT!

Dereference P

SEGFAULT!

One thread wants to de-allocate a memory block which 7
is still reachable by concurrent threads



TREIBER’S LOCK-FREE STACK

Top

Next
nullptr

| | |
Object 3 Object 2 Object |

= PUSH and POP operations are implemented by updating Top using CAS
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= PUSH and POP operations are implemented by updating Top using CAS



TREIBER’S LOCK-FREE STACK

nullptr

l | l I
Object 4 Object 3 Object 2 Object |

= PUSH and POP operations are implemented by updating Top using CAS



EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;



EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;

PUSH(Object* obj) {
Node* node = malloc(..);
node->obj = obj;
while (true) {
node->next = Top;
if (CAS(&Top, node->next, node))
break;



EXAMPLE: NO RECLAMATION

struct Node {
Node* next; // Next element
Object* obj; // Stored object
}s
Node* Top = nullptr;

Object* POP() {
Object* obj = nullptr;
while (true) {
Node* node = Top;
if (node == nullptr)
break;
if (CAS(&Top, node, node->next) {
obj = node->obj;
[ delete node ]

PUSH(Object* obj) {
Node* node = malloc(..);
node->obj = obj;
while (true) {

break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break;

return obj; 3



RECYCLING ELEMENTS

= [f we can avoid returning memory to the OS, the simplest approach is to recycle elements
= With simple data structures (such as Treiber’s stack) we can easily do so but

" When calling POP, the same pointer value may point to an already recycled element

®  The problem is known as “the ABA problem” and leads to the data structure corruption

= Can be solved by using a “tag”, which is adjacent to the stack top pointer and incremented each time; the tag
uniquely identifies the object

" Need to use WCAS (wide CAS), i.e., cmpxchg|6b for x86-64



EXAMPLE: RECYCLING ELEMENTS

struct Node { Object* POP() {
Node* next; // Next element Object* obj = nullptr;
Object* obj; // Stored object while (true) {
}s Node* node = Top.Pointer;
<Node*,Int> Top = { nullptr, 0 }; if (node == nullptr)
break;
PUSH(Object* obj) { if (WCAS(&Top,
Node* node = [ allocate node | { node, Top.Tag }
node->obj = obj; { node->next, Top.Tag+l }))
while (true) { obj = node->obj;
node->next = Top.Pointer; [ recycle node ]
if (WCAS(&Top, break;
{ node->next, Top.Tag }, }
{ node, Top.Tag+l })) } s
break; return obj;

} o} }



MORE GENERAL SOLUTION

= Need to postpone de-allocation of this memory block until it is safe to do so
= But memory usage must be bounded for non-blocking progress guarantees
= Wait-free reclamation is especially difficult
" No universal wait-free memory reclamation scheme existed for hand-crafted data structures until recently

®  The fast-path-slow-path [PPoPP ’|2] methodology cannot be applied to reclamation directly



QUESTIONS!?



EPOCH-BASED RECLAMATION (EBR)

= Uses a global epoch counter (aka “era” in other algorithms)
= As part of per-thread state, each thread keeps a reservation

= Many variations of EBR exist, which differ on how to increment the epoch counter (conditionally vs.
unconditionally) and when to trigger memory reclamation

= For the original EBR only 3 distinct epoch values are needed
= As an example, consider a variant with unconditional epoch increments presented in [PPoPP ’ 18]

reservations:

Thread | P2l
Thread 2 |l
I EM [epoch'="2]
Thread 4 s

global_epoch =2




EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
=  When beginning, a thread records the current global epoch value to its reservation

=  When ending, the thread resets its reservation



EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped

=  When beginning, a thread records the current global epoch value to its reservation

=  When ending, the thread resets its reservation

PUSH_EBR(Object* obj) { Object* POP_EBR() {
begin_op(); begin_op();
PUSH(obj); Object* obj = POP();
end_op(); end_op();

} return obj;

20



EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
=  When beginning, a thread records the current global epoch value to its reservation

=  When ending, the thread resets its reservation

global_epoch =2

begin_op() {
reservations[TID] = global epoch; mmmdll [cpoch = 2]
}

21



EPOCH-BASED RECLAMATION (EBR)

= Each data structure operation is wrapped
=  When beginning, a thread records the current global epoch value to its reservation

=  When ending, the thread resets its reservation

global_epoch =2

begin_op() {

reservations[TID] = global epoch; mmmdll [cpoch = 2]
}
end_op() {

ﬁ

reservations[TID] = o;

¥
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EPOCH-BASED RECLAMATION (EBR)

= When deleting, postpone the actual deallocation by retiring a memory block

Thread 3’s

Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a
thread-local list

Periodically increment the global epoch counter when retiring

Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch
at the moment of retirement is past all reservation values across all threads
reservations:

global_epoch =2

[N [epoch =T ]
LA [epoch =]
[retire=2] [retire=2] [retire=1] [retire=0] Thread 3 | Eeleis A

Thread 4 |IEeldisad
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EPOCH-BASED RECLAMATION (EBR)

= When deleting, postpone the actual deallocation by retiring a memory block

= Store the global epoch counter at the moment of retiring (“retire epoch”) and place the retired block to a
thread-local list

= Periodically increment the global epoch counter when retiring

" Periodically scan previously retired blocks from the thread-local list and deallocate those for which the epoch
at the moment of retirement is past all reservation values across all threads
reservations:

global_epoch =2

<R [epoch= "]

Thread 3’s Thread 2 |l iiasd
list [retire=2] [retire=2] [retire=1] [retire=0] Y r Kkl [epoch = 2]

Thread 4 |IEeldisad

can be deleted

24



EBR SUMMARY

= EBR tracks memory using “epochs”

= Simple API

= Very fast, especially when finding a good balance of how frequently retired nodes need to be scanned
= The scheme is blocking

= |f one thread is stuck and never calls end_op(), an unbounded number of blocks can be allocated and never
deleted

= Memory usage is thus unbounded

= The program can eventually crash when memory is exhausted

25



HAZARD POINTERS

= Originally published in [TPDS *04]

" Wrap all pointer dereferences
= Reservations keep pointers rather than epochs
= Since a thread may reserve multiple pointers, several reservations per thread are needed
= An index identifies a specific reservation in a thread

" When retiring a block, put it in a thread-local list

" Periodically scan the list to check if any of the retired block pointers do not overlap with reservations across
all threads

®  Deallocate such blocks

26



EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 27
} return obj;



EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get_protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 28
} return obj;



EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
= get_protected(): safely retrieve a pointer to while (true) {
the protected object by creating a reservation Node* node =
get_protected(&Top, 0);
if (node == nullptr)

break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 2

} return obj;



EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 30
} return obj;



EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
= retire(): mark an object for deletion Object* obj = nullptr;
while (true) {

= the retired object must be deleted from the data

structure first, i.e., only in-flight threads can still Node* node =
access it get_protected(&Top, 0);
if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 3
} return obj;



EXAMPLE: HAZARD POINTERS’ API

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 2
} return obj;



EXAMPLE: HAZARD POINTERS’ API

Object* POP() {
Object* obj = nullptr;
= clear(): reset all prior reservations made by the while (true) {
current thread in get_protected() Node* node =
get protected(&Top, 0);
if (node == nullptr)

break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = malloc(..); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 3

} return obj;



HAZARD POINTERS' SUMMARY

= Hazard Pointers track memory blocks using pointers

" Lock-free in general

® |n certain cases can be used in wait-free manner

= Typically much slower than EBR

34



COMBINATION OF EBR AND HAZARD POINTERS

= Combine EBR and Hazard Pointers
= Use epochs (or “eras”) for reservations, as in EBR (64-bit values)
"  Wrap all pointer dereferences, as in Hazard Pointers, using get_protected()
"= When allocating blocks, initialize them with the current global epoch value

= Each block records an interval (“allocation” and “retire” epochs)

= To safely delete a block, its interval must not overlap with all reservations

35



COMBINATION OF EBR AND HAZARD POINTERS

= Hazard Eras [SPAA 7]

= APl is mostly compatible with Hazard Pointers, except when allocating memory blocks

= Generally much faster than Hazard Pointers

= [nterval-Based Reclamation (IBR) [PPoPP ’18]

= Simpler EBR-like API, but data structures need to modified to restart operations for starving threads

= Turns out that Hazard Eras (unlike Hazard Pointers) can be modified to guarantee wait-freedom

"  Wait-Free Eras (WFE) [PPoPP ’20] is based on Hazard Eras but is wait-free

36



HAZARD ERAS’ APl CHANGES

struct Node { Object* POP() {
Reclamation header; Object* obj = nullptr;
Node* next; // Next element while (true) {
Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {
Node* node = alloc_block(); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); 37
} return obj;



HAZARD ERAS’ APl CHANGES

= alloc_block(): allocate and initialize a memory ODjEC‘l':* POP() .{
block Object* obj = nullptr;
while (true) {

"  Wraps malloc() Node* node =

= Not in the original Hazard Pointers scheme but in get_protected(&Top, 9);
Hazard Eras and WFE if (node == nullptr)
break;
PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = alloc_block(); obj = node->obj;
node->obj = obj; retire(node);
while (true) { break;

node->next = Top; }

if (CAS(&Top, node->next, node)) }

break; clear(); 38

} return obj;



OTHER MEMORY RECLAMATION SCHEMES

= Schemes based on lock-free garbage collection

= Can be unsuitable for C++, especially when using low-level programming models

= Schemes that rely on certain OS primitives or mechanisms

= QSense [SPAA '16], DEBRA+ [PODC ’15]

= Can be convenient for user-space programs but problematic for kernel-space code or for strict non-blocking

guarantees since typical OSes use locks

39



IMPORTANCE OF APl FOR NON-BLOCKING PROGRESS

= [BR’s APl is similar to that of EBR, except it additionally wraps pointer dereferences (no indices
needed)

= Relatively simple, can be hidden inside smart pointers

= Not always memory-bounded, e.g., when having starving threads

® The Hazard Eras’ and WFE’s APIs are based on Hazard Pointers’ API

" Hazard Pointers’s APl is carefully designed to make sure that a finite number of blocks are reserved (i.e.,
protected from reclamation)

40



QUESTIONS!?



WAIT-FREEDOM CHALLENGE

struct Node { Object* POP() {

Reclamation header; Object* obj = nullptr;

Node* next; // Next element while (true) {

Object* obj; // Stored object Node* node =
}s get protected(&Top, 0);
Node* Top = nullptr; if (node == nullptr)

. . break;

PUSH(Object* obj) { if (CAS(&Top, node, node->next) {

Node* node = alloc block();

obj = node->obj;

node->obj = obj; retire(node);
while (true) { break;
node->next = Top; }
if (CAS(&Top, node->next, node)) }
break; clear(); a
} return obj;



WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global era = 0;
retire(Node* node) {
Node* get protected(Node** ptr, int indx) { .
int prev = reservations[tid][indx]; increment_era();
while (true) {
Node* ret = *ptr; }
int new = global era;
if (prev == new) increment_era() {
return ret; F&A(&global era, 1);
reservations[tid][indx] = new; }
prev = new;




WAIT-FREEDOM CHALLENGE: HAZARD ERAS

int reservations[maxThreads][maxHEs];

int global era = 0;
retire(Node* node) {
Node* get protected(Node** ptr, int indx) { .
int prev = reservations[tid][indx]; increment_era();

while (true) {
Node* ret = *ptr; }
int new = global era;
if (prev == new) increment_era() {
return ret; F&A(&global_era, 1);
reservations[tid][indx] = new; }
prev = new;




TIMNAT AND PETRANK’S FORMULATION

= [PPoPP ’14] proposed a method to automatically convert lock-free data structures into wait-free ones
®  The original lock-free data structure needs to be written in a “normalized” form
" Normalized data structures are defined in [PPoPP ’14]

" One of the key requirements is “Any modification of the shared data structure is executed using a CAS operation”

= Operations can be restarted if things go wrong, therefore get_protected() does not need to be
unbounded

=  Examples include [PPoPP ’17]’s implementations of CRTurnQueue and KPQueue using Hazard Pointers
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WAIT-FREE ERAS (WFE)

= Although wait-free reclamation is feasible in special cases, it is much harder to guarantee for arbitrary
formulated wait-free data structures

= Specialized instructions such as F&A can still be useful in wait-free data structures for performance reasons

= Even CAS-only wait-free data structures are not necessarily derived from “normalized” form

= Our recent [PPoPP "20] publication,Wait-Free Eras (VWFE), solves wait-free memory reclamation for a
more general case

46



WAIT-FREE ERAS (WFE)

= Bird’s-eye view
m  Use a fast-path-slow-path method for get_protected()

= retire() increments the global era (or alternatively alloc_block()): it calls a helper method before
incrementing the era clock

" Wiit-free consensus is achieved with the help of

=  F&A:available on x86-64 and AArché4 as of v8.1 and suitable for wait-free algorithms due to bounded
execution time

= WCAS:also available on x86-64 and AArché4
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WAIT-FREE ERAS (WFE)

increment_era() in

get_protected fast() retire()

Scan all state entries

get_protected_slow() state: to find requests
Thread | result |
Thread 2 result 2

Request help through Thread 3
per-thread state

Gather output

result 3
Thread 4 result 4

help_thread()

F&A(global _era, I) "



WAIT-FREE ERAS (WFE)

" [ntroduce tags to identify slow-path cycles

" Per-thread state: result is used for both input and output

They prevent spurious (belated) updates

Use pairs for result { .A, .B }

= Reservations also use pairs { .A, .B }

Two special reservations for helpers (maxHEs, maxHEs+1),
i.e., the total number is maxHEs+?2

A B
Input 'invptr| tag

state.result [
Output: | block *| era

reservations
A B

era tag
era @ tag

49



WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

50



WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;
state[tid][indx].result = { invptr, tag };

// Try retrieving a pointer in a loop

51



WAIT-FREE ERAS (WFE)

block* get protected slow(block** ptr, int indx, block* parent) {

int allocEra = parent->allocEra;
int tag = reservations[tid][indx].B;

state[tid][indx].ptr = ptr;
state[tid][indx].era = allocEra;

state[tid][indx].result = { invptr, tag };

// Try retrieving a pointer in a loop

if (result.A != invptr) {
int era = result.B;
reservations[tid][indx].A = era;
reservations[tid][indx].B = tag+l;
return result.A;
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WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int pair result = state[i][j].result;

if (result.A != invptr)
return;

int era = state[i][j].era;

reservations[tid][maxHEs].era = era;

block** ptr = state[i][]j].ptr;

int tag = reservations[i][j].B;

if (result.B != tag) {
reservations[tid][maxHEs].era =
return;

53



WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int prev = global era;

do {
reservations[tid][maxHEs+1].A = prev;
block* ret ptr = *ptr;
int new = global era;

if (prev == new) {
// DONE! Can produce the result
break;

}

prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1l].era = ;
reservations[tid][maxHEs].era = o;
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WAIT-FREE ERAS (WFE)

help thread(int i, int j, int tid) {

int prev = global era;

do {
reservations[tid][maxHEs+1].A = prev;
block* ret ptr = *ptr;
int new = global era;

if (prev == new) {
// DONE! Can produce the result
break;

}

prev = new;

} while (state[i][j].result == { invptr, tag });
reservations[tid][maxHEs+1l].era = ;
reservations[tid][maxHEs].era = o;
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WAIT-FREE ERAS (WFE)

= Avoiding race conditions when scanning deleted nodes
®  Check reservations 0..maxHEs- |
®  Check reservations maxHEs, maxHEs+ |

®  Check reservations 0..maxHEs-1| again

56



EVALUATION

" 4x24 Intel Xeon E7-8890 v4 (2.20GHz) 256GB RAM, GCC 8.3.0 with -O3

= Using the benchmark from IBR/PPoPP’|8 (by Wen et al.) comparing:
=  Wait-Free Eras (WFE) [PPoPP "20]
= Hazard Eras (HE) [SPAA ’17]
® Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’|8]
= Epoch-Based Reclamation (EBR)
® Hazard Pointers (HP) [TPDS ’04]

= No reclamation (Leak Memory)

= Results are for write-intensive (50% insert, 50% delete) tests

= See WFE/PPoPP 20 for read-mostly (90% get, 10% put) results 7



Mops / second

EVALUATION: KOGAN AND PETRANK’S WAIT-FREE QUEUE
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EVALUATION: CRTURN WAIT-FREE QUEUE

A WFE & HE 2GEIBR
> EBR < HP 4 Leak Memory
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Mops / second

EVALUATION: SORTED LOCK-FREE LINKED LIST
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EVALUATION: LOCK-FREE HASH MAP
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EVALUATION: LOCK-FREE NATARAJAN TREE
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CONCLUSIONS

= Concurrent data structures require careful consideration of the memory reclamation problem
= Memory reclamation itself is subject to progress guarantee requirements

" W’ait-free reclamation is feasible through VWFE
= Opens the way for wide adoption of wait-free data structures
®  The only remaining obstacle is efficient wait-free allocation and deallocation

= Can spur further research in wait-free reclamation
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AVAILABILITY

= My personal website

m  https://rusnikola.github.io

= WFE’s code

m  https://github.com/rusnikola/wfe
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AVAILABILITY

= My personal website
m  https://rusnikola.github.io

= WHFFE’s code THANKYOU!

m  https://github.com/rusnikola/wfe
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