
SNAPSHOT-FREE, TRANSPARENT, AND ROBUST MEMORY
RECLAMATION FOR LOCK-FREE DATA STRUCTURES

Ruslan Nikolaev and Binoy Ravindran
rnikola@vt.edu binoy@vt.edu

Systems Software Research Group
Virginia Tech, USA

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data
structures)

 “nothing bad will happen” Thread
A

Thread
B

Thread
C

2

CONCURRENT DATA STRUCTURES

 Many-core systems today require efficient access to data

 Concurrent data structures

 Multiple threads need to safely manipulate data structures (similar to sequential data
structures)

 “nothing bad will happen”

 Concurrency also adds a liveness property, which stipulates how threads will be able to make
progress

 “something good will happen eventually”
Thread

A
Thread

B
Thread

C

Thread
A

Thread
B

Thread
C

3

NON-BLOCKING ALGORITHMS

 Lock-freedom: a common type of non-blocking progress

 At least one thread always makes progress in a finite number of steps

 CAS (compare-and-swap) is used universally in non-blocking algorithms

 Double-width CAS which modifies two adjacent words is available on x86-64 and ARM64

 LL/SC (load-link/store-conditional) which is more versatile is available on PowerPC and ARM64

 F&A (fetch-and-add) is also often available as a specialized instruction to improve performance

4

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

One thread wants to de-allocate a memory object
which is still reachable by concurrent threads

5

MEMORY RECLAMATION PROBLEM

Dereference P

Delete P

Dereference P

Thread A Thread B Thread C

SEGFAULT!
SEGFAULT!

One thread wants to de-allocate a memory object
which is still reachable by concurrent threads

6

Something
went wrong! Yep!

MEMORY RECLAMATION PROBLEM

Delete P

Thread A Thread B Thread C

Postpone de-allocation until it is safe to do so 7

Delete P

Dereference P

Dereference P

No problem OK

MEMORY RECLAMATION PROBLEM

 Concurrent programming is hard

 Non-blocking (lock-free) data structures require special treatment of deleted memory objects

 Garbage collectors are often impractical in C/C++ and lack suitable progress/performance properties

 Desirable properties for memory reclamation

 Non-blocking progress: avoid using locks

 Robustness: bounding memory usage even when threads are stalled or preempted

 Transparency: avoiding implicit assumptions about threads; threads can be created/deleted dynamically

 Snapshot-freedom: not taking snapshots of the global state to alleviate contention

HYALINE: API

 Memory reclamation must be explicitly embedded into the code

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: API

handle_t Handle = enter();

// deref is only for robust versions

List = deref(&LinkedList);

Node = deref(&List->Next);

retire(Node); // Mark for deletion

// Do something else...

leave(Handle);

 Memory reclamation must be explicitly embedded into the code

HYALINE: SINGLE LIST

 The main idea

 Use special reference counting, which is triggered only when retiring objects

 Retired objects are appended to a global list

 The handle points to the part of the list when the thread entered its operation

Handle
(Thread i)

Handle
(Thread j)

NRef0 NRef NRef

Head [HRef, HPtr]

...

HYALINE: SINGLE LIST

 The main idea

 Update Head's reference counter (HRef) when entering and leaving thread operations

 When leaving, a thread traverses a sublist from the beginning to the object pointed to by a handle

 Propagate counters when retiring objects

 Treat the very first list element specially: HRef rather than NRef reflects its reference counter

 When appending to the list, adjust the predecessor’s NRef (previously 0) with the HRef value

HRef +

...NRefNRef NRef NRef

00

0

Head [HRef, HPtr]

NRef NRef NRef...

New Head

≤ 0 ≥ 1

HYALINE: MULTIPLE LISTS

 The main idea

 Maintain multiple global lists of retired objects to alleviate contention

 Each list is used by a subset of threads

 Retire an entire batch of objects

 One reference counter for the entire batch
N0.m...N0.1N0.0[HRef0=2]

N1.m...N1.0N1.1

N2.m...N2.0N2.1

[HRef1=0]

[HRef2=1]

[HRef3=0]

[HRef4=2]

Rm

...

R0R1

Batch 0 Batch 1 Batch m

... ...

Slots

[HRef5=0]

[HRef6=0]

[HRef7=0]

...

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot-
Free

Robust Transparent Extra Memory API complexity

Reference Counting Very Slow Yes Yes Partially (swap) Double each
pointer

Harder,
Intrusive

Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy

Hazard Pointers Slow No Yes No (deletion) 1 word Harder

Hazard Eras Medium No Yes No (deletion) 3 words Harder

Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium

Hyaline Fast Yes No Yes 3 words Very Easy

Hyaline-1 Fast Yes No Almost 3 words Very Easy

Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

VARIANTS OF HYALINE

 Hyaline: a non-robust version, uses double-width CAS

 Hyaline-1: a specialized version of Hyaline, each slot is used by just one thread (regular CAS)

 Hyaline-S: a robust version of Hyaline, inspired by “birth eras” from Hazard Eras and Interval
Based Reclamation

 Hyaline-1S: a specialized version of Hyaline-1S (regular CAS)

22

EVALUATION

 4x18 Intel Xeon E7-8880 v3 (2.30GHz) 128GB RAM, Clang 11.0.1 with -O3

 Adopted the benchmark from IBR/PPoPP ’18 (by Wen et al.) and compared against:

 Epoch-Based Reclamation (Epoch)

 Interval-Based Reclamation, 2GEIBR (IBR) [PPoPP ’18]

 Hazard Eras (HE) [SPAA ’17]

 Hazard Pointers (HP) [TPDS ’04]

 No reclamation, i.e., leaking memory (No MM)

 Results are for write-intensive (50% insert, 50% delete) and read-dominated (90% get, 10%
put) tests

 See the paper for more results 23

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

0.100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g

h
p

u
t

(M
 o

p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>
0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

EVALUATION: WRITE-INTENSIVE TESTS

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

0

500

1000

1500

2000

2500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

0.100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g

h
p

u
t

(M
 o

p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>
0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>> >>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

0

50

100

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Hash Map

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List

EVALUATION: READ-DOMINATED TESTS

0

500

1000

1500

2000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n Epoch

IBR
Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

0

1

2

3

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR

Bonsai Tree

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0

100

200

300

400

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r

O
p
e
ra

ti
o
n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.000

0.025

0.050

0.075

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads
T

h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

Linked List
>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

>>>>> >>>>>

0

50

100

150

200

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

>No MM
Epoch

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

IBR
HE

HP

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>0

1000

2000

3000

4000

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

R
e

ti
re

d
 O

b
je

c
ts

 p
e

r
O

p
e

ra
ti
o

n

>

Epoch
IBR

Hyaline
Hyaline-1

Hyaline-S
Hyaline-1S

HE
HP

Hash Map

AVAILABILITY

 Hyaline’s code and the benchmark are open-source and available at

 https://github.com/rusnikola/lfsmr

 Additional paper appendices (LL/SC and optimizations) are available at

 https://arxiv.org/pdf/1905.07903.pdf

The work is supported by
AFOSR under grants FA9550-
15-1-0098 and FA9550-16-1-
0371, and ONR under grants
N00014-18-1-2022 and
N00014-19-1-2493

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

AVAILABILITY

 Hyaline’s code and the benchmark are open-source and available at

 https://github.com/rusnikola/lfsmr

 Additional paper appendices (LL/SC and optimizations) are available at

 https://arxiv.org/pdf/1905.07903.pdf

THANK YOU!

The work is supported by
AFOSR under grants FA9550-
15-1-0098 and FA9550-16-1-
0371, and ONR under grants
N00014-18-1-2022 and
N00014-19-1-2493

Artwork attribution: wikipedia.org (Intel, AMD64, ARM, PowerPC
logos), intel.com (Xeon logo), techradar.com (multi-core chip), the
ONR and AFOSR websites (respective logos)

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

