SNAPSHOT-FREE, TRANSPARENT, AND ROBUST MEMORY
RECLAMATION FOR LOCK-FREE DATA STRUCTURES

Ruslan Nikolaev and Binoy Ravindran

rnikola@vt.edu binoy@vt.edu
Systems Software Research Group

Virginia Tech, USA

CONCURRENT DATA STRUCTURES

= Many-core systems today require efficient access to da

= Concurrent data structures

= Multiple threads need to safely manipulate data structures (sunuar 0 segyuential data
structures)

= “nothing bad will happen” Thread Thread Thread
A B C

CONCURRENT DATA STRUCTURES

= Many-core systems today require efficient access to da

= Concurrent data structures

= Multiple threads need to safely manipulate data structures (simtlar to sequential data

structures)
Thread Thread Thread

= “nothing bad will happen” A B C

= Concurrency also adds a liveness property, which stipulates how threads will be able to make
progress

y)) B Thread Thread Thread
= “something good will happen eventually A B C

NON-BLOCKING ALGORITHMS

= Lock-freedom. a common type of non-blocking progress
= At least one thread always makes progress in a finite number of steps
= CAS (compare-and-swap) is used untversally in non-blocking algorithms
= Double-width CAS which modifies two adjacent words is available on x86-64 and ARM64
= LL/SC (load-link/store-conditional) which is more versatile is available on PowerPC and ARM64

= F&A (fetch-and-add) is also often available as a specialized instruction to improve performance

intel. Arm PzwerPC

MEMORY RECLAMATION PROBLEM

Thread A

Thread B Thread C

|

One thread wants to de-allocate a memory object 5
which is still reachable by concurrent threads

MEMORY RECLAMATION PROBLEM

Something O .
[went wrong! ”
|
;
|
= ;
| |
| |
|
|
|
|

Thread A Thread B Thread C
|
P

SEGFAULT!
SEGFAULT!

One thread wants to de-allocate a memory object 6
which is still reachable by concurrent threads

MEMORY RECLAMATION PROBLEM

Thread A Thread B Thread C

(o promen LA o

Delete P

Postpone de-allocation until it is safe to do so 7

Dereference P

——— e ————— — — — —

MEMORY RECLAMATION PROBLEM

= Concurrent programming s hard

= Non-blocking (lock-free) data structures require special treatment of deleted memory objects

= Garbage collectors are often impractical in C/C++ and lack suitable progress/performance properties

= Desirable properties for memory reclamation

Non-blocking progress. avoid using locks

Robustness. bounding memory usage even when threads are stalled or preempted

Transparency. avolding implicit assumptions about threads; threads can be created/deleted dynamically

Snapshot-freedom. not taking snapshots of the global state to alleviate contention

HYALINE: API

= Memory reclamation must be explicitly embedded into the code

handle t Handle = enter();

// deref is only for robust versions
List = deref (&LinkedList);

Node = deref (&List->Next);

retire (Node); // Mark for deletion
// Do something else...

leave (Handle) ;

HYALINE: API

= Memory reclamation must be explicitly embedded into the code

handle t Handle = enter();
// deref is only for robust versions
List = deref (&LinkedList);

Node = deref (&List->Next);

retire (Node); // Mark for deletion
// Do something else...

leave (Handle) ;

HYALINE: API

= Memory reclamation must be explicitly embedded into the code

handle t Handle = enter();

// deref is only for robust versions
List = deref (&LinkedList);

Node = deref (&List->Next) ;

retire (Node); // Mark for deletion
// Do something else...

leave (Handle) ;

HYALINE: API

= Memory reclamation must be explicitly embedded into the code

handle t Handle = enter();
// deref is only for robust versions
List = deref (&LinkedList);

Node = deref (&List->Next);

retire (Node); // Mark for deletion
// Do something else...

leave (Handle) ;

HYALINE: API

= Memory reclamation must be explicitly embedded into the code

handle t Handle = enter();

// deref is only for robust versions
List = deref (&LinkedList);

Node = deref (&List->Next);

retire (Node); // Mark for deletion
// Do something else...

leave (Handle) ;

HYALINE: SINGLE LIST

= The main idea

= Use special reference counting, which is triggered only when retiring objects

= Retired objects are appended to a global list

The handle points to the part of the list when the thread entered its operation

Handle Handle
He;‘d [HRef, HPU] (Threadi) (Thread))

0 » NRef| —+%{NRef| ¥ --- | NRef

HYALINE: SINGLE LIST

= The main idea
= Update Head's reference counter (HRef) when entering and leaving thread operations
= When leaving, a thread traverses a sublist from the beginning to the object pointed to by a handle

= Propagate counters when retiring objects
= Treat the very first list element specially: HRef rather than NRef reflects its reference counter

= When appending to the list, adjust the predecessor’s NRef (previously 0) with the HRef value

New Head Head [HRef, HPtr]

% NRef| —+% ---|NRef

.

T NRef| % ---[NRef

HYALINE: MULTIPLE LISTS

The main idea

Maintain multiple global lists of retired objects to alleviate contention

= Each list is used by a subset of threads
= Retire an entire batch of objects

= One reference counter for the entire batch

Batch m

Slots Batch 0 V Batch 1 '
[HRefo=2] |—»|N0.0| ——»{NO.1
[HRef1=0] R I
[HRef2=1] F»{N1.1] {N1.0
[HRef3=0] v v
[HRef4=2] |N2.1| —{N2.0
[HRef5=0] v v
[HRef6=0]
[HRef7=0] R1 RO

COMPARISON

Scheme Performance Snapshot- Robust Transparent Extra Memory APl complexity
Free
Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
pointer Intrusive
Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy
Hazard Pointers Slow No Yes No (deletion) 1 word Harder
Hazard Eras Medium No Yes No (deletion) 3 words Harder
Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium
Hyaline Fast Yes No Yes 3 words Very Easy
Hyaline-1 Fast Yes No Almost 3 words Very Easy
Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot- Robust Transparent Extra Memory APl complexity
Free
Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
pointer Intrusive
Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy
Hazard Pointers Slow No Yes No (deletion) 1 word Harder
Hazard Eras Medium No Yes No (deletion) 3 words Harder
Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium
Hyaline Fast Yes No Yes 3 words Very Easy
Hyaline-1 Fast Yes No Almost 3 words Very Easy
Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot- Robust Transparent Extra Memory APl complexity
Free
Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
pointer Intrusive
Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy
Hazard Pointers Slow No Yes No (deletion) 1 word Harder
Hazard Eras Medium No Yes No (deletion) 3 words Harder
Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium
Hyaline Fast Yes No Yes 3 words Very Easy
Hyaline-1 Fast Yes No Almost 3 words Very Easy
Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot- Robust Transparent Extra Memory APl complexity
Free
Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
pointer Intrusive
Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy
Hazard Pointers Slow No Yes No (deletion) 1 word Harder
Hazard Eras Medium No Yes No (deletion) 3 words Harder
Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium
Hyaline Fast Yes No Yes 3 words Very Easy
Hyaline-1 Fast Yes No Almost 3 words Very Easy
Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

COMPARISON

Scheme Performance Snapshot- Robust Transparent Extra Memory APl complexity
Free
Reference Counting Very Slow Yes Yes Partially (swap) Double each Harder,
pointer Intrusive
Epoch Based Reclamation Fast Yes No No (deletion) 1 word Very Easy
Hazard Pointers Slow No Yes No (deletion) 1 word Harder
Hazard Eras Medium No Yes No (deletion) 3 words Harder
Interval Based Reclamation Fast No Yes No (deletion) 3 words Medium
Hyaline Fast Yes No Yes 3 words Very Easy
Hyaline-1 Fast Yes No Almost 3 words Very Easy
Hyaline-S Fast Yes Yes Yes 3 words Medium

Hyaline-1S Fast Yes Yes Almost 3 words Medium

VARIANTS OF HYALINE

= Hyaline: a non-robust version, uses double-width CAS
= Hyaline-1: a specialized version of Hyaline, each slot is used by just one thread (regular CAS)

= Hyaline-S: a robust version of Hyaline, inspired by “birth eras” from Hazard Eras and Interval
Based Reclamation

= Hyaline-1S: a specialized version of Hyaline-1S (regular CAS)

22

EVALUATION

ISR FFTTTTTITCCTC | | W e

= 4x18 Intel Xeon E7-8880 v3 (2.30GHz) 128GB RAM, Clang 11.0.1 with -O3 j
= Adopted the benchmark from IBR/PPoPP "18 (by Wen et al.) and compared agal .

= [fpoch-Based Reclamation (Epoch)

= /nterval-Based Reclamation, 2GEIBR (IBR) [PPoPP '18]
m Hazard Eras (HE) [SPAA '17]

m Hazard Pointers (HP) [TPDS '04]

= No reclamation, (e, leaking memory (No MM)

= Results are for write-intensive (50% tnsert, 50% delete) and read-dominated (90% get, 10%
put) tests

= See the paper for more results 23

EVALUATION: WRITE-INTENSIVE TESTS

_0.25
O
(0]
0
g
£0.20;
=3
2015 -
20.15
3 Bonsal Tree
£
= 0.10 A NoMM =# Hyaline © Hyaline-S & IBR
& Epoch ¢ Hyaline-1 - Hyaline-1S
1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

2500
c & Epoch 7 Hyaline © Hyaline-S
o £} IBR ¢ Hyaline-1 -~ Hyaline-1S

2000

1500

1000

500

Retired Objects per Operat

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

EVALUATION: WRITE-INTENSIVE TESTS

0.25-

e
[¥)
(=}

Throughput (M ops/sec)
=
(&)}

o
—
o

Bonsail Tree

A NoMM =# Hyaline © Hyaline-S & IBR
& Epoch ¢ Hyaline-1 - Hyaline-1S

2500

ion

2000

1500

1000

500

Retired Objects per Operat

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

& Epoch 7 Hyaline © Hyaline-S
£} IBR ¢ Hyaline-1 -~ Hyaline-1S

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

0.100

0.075

0.050

0.025

Throughput (M ops/sec)

0.000

ion

Retired Objects per Operat

A NoMM =7 Hyaline © Hyaline-S = IBR HP

& Epoch ¢ Hyaline-1 - Hyaline-1S A HE

Linked List

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

1500+

1000+

(6}
o
o

<& Epoch 57 Hyaline ©
& IBR ¢ Hyaline-1 -~

Hyaline-S A HE
Hyaline-1S

HP

9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

EVALUATION: WRITE-INTENSIVE TESTS

0.25-

e
[¥)
(=}

Throughput (M ops/sec)
=
(&)}

o
—
o

Bonsail Tree

A NoMM =# Hyaline © Hyaline-S & IBR
& Epoch ¢ Hyaline-1 - Hyaline-1S

2500

ion

2000

1500

1000

500

Retired Objects per Operat

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

& Epoch 7 Hyaline © Hyaline-S
£} IBR ¢ Hyaline-1 -~ Hyaline-1S

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

0.100

0.075

0.050

0.025

Throughput (M ops/sec)

0.000

ion

Retired Objects per Operat

A NoMM =7 Hyaline © Hyaline-S = IBR HP
& Epoch ¢ Hyaline-1 - Hyaline-1S A HE

Linked List

1

9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

1500+

1000+

(6}
o
o

&S Epoch 7 Hyaline & Hyaline-S A HE
& IBR > Hyaline-1 -+ Hyaline-1S HP

9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

-
o
o

Throughput (M ops/sec)
(&)}
o

A NoMM =7 Hyaline © Hyaline-S & IBR HP
& Epoch ¢ Hyaline-1 - Hyaline-1S A HE

3000

2000

1000

Retired Objects per Operation

1

9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

& Epoch 57 Hyaline © Hyaline-S A HE
Fl IBR > Hyaline-1 -+ Hyaline-1S HP

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads

EVALUATION: READ-DOMINATED TESTS

3 A NoMM 5 Hyaline © Hyaline-S & IBR
& Epoch ¢ Hyaline-1 -~ Hyaline-1S
o
Q
R
8
o]
=
5
a
<
o1
8 °
—
g Bonsal Tree
-
1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads
c <& Epoch 57 Hyaline © Hyaline-S
.9 2000+ £ IBR ¢ Hyaline-1 -~ Hyaline-1S

1500+

1000+

500+

Retired Objects per Operat

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

EVALUATION: READ-DOMINATED TESTS

Throughput (M ops/sec)

A NoMM 7 Hyaline © Hyaline-S & IBR
& Epoch ¢ Hyaline-1 -~ Hyaline-1S

Bonsail Tree

1

ion

.0 2000+

1500+

1000+

Retired Objects per Operat

500+

9 18 27 36 45 54 63 72 81 90 99 108117 126135144
Threads

<& Epoch 57 Hyaline © Hyaline-S
£ IBR ¢ Hyaline-1 -~ Hyaline-1S

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

0.075

0.050

0.025

Throughput (M ops/sec)

0.000

N
o
o

w
o
o

Retired Objects per Operation
N N
o o
o o

o

A NoMM 7 Hyaline < Hyaline-S & IBR HP
& Epoch ¢ Hyaline-1 -+ Hyaline-1S A HE

Linked List

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

<& Epoch <7 Hyaline © Hyaline-S A HE
B IBR 2% Hyaline-1 -~ Hyaline-1S HP

1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads

EVALUATION: READ-DOMINATED TESTS

200/
3 A& NoMM s# Hyaline © Hyaline-S & IBR A NoMM 57 Hyaline € Hyaline-S & IBR HP A NoMM 5 Hyaline © Hyaline-S & IBR HP
<& Epoch ¢ Hyaline-1 -~ Hyaline-1S & Epoch ¢ Hyaline-1 -+ Hyaline-1S A HE . S Epoch ¢ Hyaline-1 - Hyaline-1S A HE
o ©0.075 o
(0]
% § 8150
Q9] o Q.
o2 o o
=
=3 =0.050 =100
-— -— S
3 2 o
< = <
o1 [o
: Bonsai Tree i i 2
— —
c c £
£ 2 Linked List |£
0. 0.000 L S O A . [N O Y
1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144
Threads Threads Threads
c <& Epoch 57 Hyaline © Hyaline-S c 400 <& Epoch <7 Hyaline © Hyaline-S A HE c & Epoch <7 Hyaline © Hyaline-S A HE
.© 2000+ £ IBR ¢ Hyaline-1 -~ Hyaline-1S K] B IBR 2% Hyaline-1 -~ Hyaline-1S HP -84000- £l IBR 2% Hyaline-1 -+ Hyaline-1S HP
© © © VAN
— [o !
))) &
(o 0_300 o .
O 15001 O O 30001
| . — —
(O] (] o
o o o
[2)) [2)
5 1000 5 200 0 20001
0 Q Q
o o o)
@) (@) @)
© -]
S 500 100 B 1000
= = =
o © o)
0'd Y 0'd
0| =X X 0| &= 0] =<
1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144 1 9 18 27 36 45 54 63 72 81 90 99 108117126135144

Threads Threads Threads

AVAILABILITY

= Hyaline's code and the benchmark are open-source and available at

" https://github.com/rusnikola/lfsmr

= Additional paper appendices (LL/SC and optimizations) are available at
= https://arxiv.org/pdf/1905.07903.pdf

The work (s supported by
AFOSR under grants FA9550-
15-7-0098 and FA9550-16-1-
0371, and ONR under grants
NO0014-18-7-2022 and

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

AVAILABILITY

= Hyaline's code and the benchmark are open-source and available at
m https://github.com/rusnikola/lfsmr

= Additional paper appendices (LL/SC and optimizations) are available at
= https://arxiv.org/pdf/1905.07903.pdf

The work (s supported by
AFOSR under grants FA9550-
THANK YOU! 15-7-0098 and FA9550-16-1-
0371, and ONR under grants
NO0014-18-7-2022 and
NO0Q74-19-1-2493

3

i

Artwork attribution: wikipedia.org (Intel, AMD64, ARM, PowerPC

logos), intel.com (Xeon logo), techradar.com (multi-core chip), the
ONR and AFOSR websites (respective logos)

https://github.com/rusnikola/lfsmr
https://arxiv.org/pdf/1905.07903.pdf

