
Brief Announcement:

Crystalline: Fast and 

Memory Efficient Wait-

Free Reclamation
Ruslan Nikolaev *, rnikola@psu.edu, Penn State University, USA

Binoy Ravindran, binoy@vt.edu, Virginia Tech, USA

* The work was done while this author

worked at Virginia Tech

mailto:rnikola@psu.edu
mailto:binoy@vt.edu


Memory Reclamation

 Non-blocking data structures do not use simple mutual exclusion

 A concurrent thread may hold an obsolete pointer to an object which is about to be 
freed by another thread

 Safe memory reclamation (SMR) schemes are typically used for unmanaged code (C/C++)

 Reclamation workload balancing

 Read operations dominate, but data is still modified

 In typical SMR schemes, most threads are not actively reclaiming memory

 The problem have not received adequate attention in the literature

 Synchronous vs. asynchronous reclamation

 In typical SMR schemes, threads periodically examine which objects marked for deletion 
can be safely freed

 Reference counting: an arbitrary thread with the last reference frees an object



Memory Reclamation

 Reference counting

 Impractical due to very high overheads when accessing objects

 Hyaline [PODC’19 BA, PLDI’21] is an approach where reference counters are only 

used when objects are retired

 Pros: asynchronous and exhibits high performance, protects against stalled threads

 Cons: can still use unbounded memory (i.e., blocking) when threads starve

 We present Crystalline

 Crystalline-L is based on Hyaline-1S but is lock-free even when threads starve

 Crystalline-W further extends Crystalline-L to make it wait-free



Crystalline-L

 Background (Hyaline)

 Threads explicitly annotate each operation

 When objects are detached from a data structure, they are first retired and then 

freed when it is safe to do so

 Hyaline-1S is a variant that bounds memory usage for stalled threads by explicitly 

tracking local pointers via a special protect method using the global era clock

 Each allocated object is assigned a “birth era”

 Not lock-free unless operations are periodically restarted for starving threads

 Example: one “unlucky” thread is stuck traversing a list because it keeps growing

 Crystalline-L adopts a different API

 Hyaline-1S’s API enables retrieving an unbounded number of local pointers

 Alternative APIs used in Hazard Pointers [TPDS’04] or Hazard Eras [SPAA’17] 

explicitly differentiate each local pointer reservation in protect



Crystalline-L: Challenges

 Hyaline-1S aggregates objects in a batch

 Can only retire the entire batch

 Each thread has its own retirement list, and each object from the batch is 

inserted to the corresponding list

 One of the objects keeps a per-batch reference counter

 Needs at least MAX_THREADS+1 objects per a batch

 Crystalline-L handles MAX_IDX local pointers

 The above problem is further aggravated

 Needs at least MAX_THREADS×MAX_IDX+1 objects per a batch



Crystalline-L: Solution

 The required number of objects is much lower in practice

 Each object is appended to the respective list only if the list’s era overlaps with 

the batch’s minimum birth era

 Crystalline-L uses dynamic batches

 retire first checks how many lists are to be changed for the batch to be fully 

retired and records the location of the corresponding (per-thread) lists

 If the number of objects in the batch suffices, retire completes by appending the 

objects to their corresponding lists

 Otherwise, retire is repeated later when more objects are available

 But the number of iterations is still bounded by the worst-case number of objects



Crystalline-W: Challenges

 Crystalline-L is only lock-free because

 retire has an unbounded loop: protect or another retire contends on the same list

 Does not let a CAS loop in retire to converge

 protect has an unbounded loop which must converge on the era value

 The era clock unconditionally increments when a new object is allocated



Crystalline-W: Solution

 The first problem with retire

 When “traversing” retirement lists, i.e., dereferencing a thread from each batch 

that appears in its retirement list, next pointers in the corresponding list are 

tainted with SWAP

 retire attaches new objects with SWAP rather than a CAS loop

 If the next field of the new object is intact, the old list is attached as a tail (using CAS)

 If the next field of the new object is tainted, retire traverses the “docked tail” (i.e., the 

old list) on behalf of the thread that tainted next

 Some corner cases exist but are handled in wait-free fashion



Crystalline-W: Solution

 The second problem with protect

 Adopts a mechanism similar to that of Wait-Free Eras [PPoPP’20]

 The fast-path-slow-path approach to coordinate global era clock increments

 Helping other threads before incrementing the era clock

 Despite similarities, Crystalline-W diverges from Wait-Free Eras significantly

 Cannot rescan retirement lists multiple times due to asynchronous reclamation

 Uses special tricks: odd and even tags, an array of parent objects, “terminal” nodes in the 

retirement lists, etc.



Evaluation

None: no reclamation (leak memory)

HP: Hazard Pointers [TPDS’04]

HE: Hazard Eras [SPAA’17]

IBR: 2GE Interval-Based Reclamation [PPoPP’18]

WFE: Wait-Free Eras [PPoPP’20]

Hyaline: Hyaline-1 and Hyaline-1S [PODC’19 BA, PLDI’21]

EBR: Epoch-Based Reclamation

4 x Intel Xeon E7-8890 v4 2.20 GHz CPUs (96 cores), 256GB of RAM

Lock-Free Hash Map

(read-dominated)



More Details

 Code is open-source and available at:

 https://github.com/rusnikola/wfsmr

 Full paper is available as an arXiv report:

 https://arxiv.org/abs/2108.02763

THANK YOU!

https://github.com/rusnikola/wfsmr
https://arxiv.org/abs/2108.02763

