
Adelie: Continuous Address Space Layout
Re-randomization for Linux Drivers

Ruslan Nikolaev, Hassan Nadeem,
Cathlyn Stone, Binoy Ravindran

Security vulnerabilities in OSs continues to
rise

Number of CVEs for device drivers

Attacks

• Control-flow attacks
• Return-Oriented Programming (ROP)

– ASLR mitigates against traditional ROP
– More elaborate ROP attacks are still

possible
– KASLR is limited

Contributions

Extend KASLR support in Linux

Implement stack re-randomization, address encryption,
and continuous ASLR on Linux modules

Goals

Generality: Transform all modules to the 64-bit KASLR
model

Performance: Avoid costs of copying code and data (re-
randomization)

Entropy: Kernel modules can be any distance apart from each
other

Security: Protect against code reuse attacks

Extending KASLR

● We use a preliminary PIE patch for the Linux kernel
● Cannot use PIE for kernel modules
● We use a more general PIC model for modules, which is

similar to shared libraries (with GOT and PLT support)
● Extends KASLR to 64 bits
● Avoids costly absolute-address models such as

mcmodel=large

Extending KASLR

● Compilers rely on procedure linkage tables (PLT) and global
offset tables (GOT) to call external functions and retrieve
external addresses

● We use these to support multiple mappings to code during
ongoing re-randomization

Code

call f@plt mov r, f@got
jmp r

PLT GOT

Z 0xXX..XX

Optimizations

• Spectre-V2
– Affects indirect calls
– Impacts the PIC model

● Optimizations are crucial

* The picture is taken from Wikipedia

Continuous Module Re-Randomization

Kernel Mod
1

Mod
2

Mod
1

Mod
2

64-bit Virtual Address Space

...

... ...
1

2

Creating new
mappings

Mod
23

Unmapping old regions

... Mod
1Kernel ...

...

Continuous Module Re-Randomization

Use a zero-copying
mechanism and organize
modules into movable
and immovable parts

.rodata

.fixed.text

Movable

.data
.bss

.text

Fixed
GOT

Local
GOT

Kernel

kmalloc
kfree
printk

…
Local
GOT

Fixed
GOT

Immovable

Symbol
Table

.data

updated during rerandomization

.text

Continuous Module Re-Randomization

● Use delayed unmapping to control address space lifetime
● Track pending calls in a scalable manner with as little

overhead as possible
● Enclose operations that access potentially disappearing

memory blocks with calls to mr_start and mr_finish

Continuous Module Re-Randomization

long func(long arg) { … }

long func_real(long arg)
{ … } // Renamed function

kernel_ref(&func);

long func(long arg)
{

mr_start();
get_new_stack();
long ret = func_real(arg);
return_old_stack();
mr_finish();
return ret;

}

code transformation

[Movable]

[Immovable]

Wrap externally
accessible functions
in re-randomizable
modules,
continuously re-
randomize stacks

Continuous Module Re-Randomization
get_new_stack (wrapper):
 %rbp = %rsp; // save stack
 stk = pop_stack_this_cpu();
 if (!stk) stk = alloc_stack();
 %rsp = stk;
return_old_stack (wrapper):
 stk = %rsp;
 %rsp = %rbp; // restore stack
 push_stack_this_cpu(stk);
prologue/epilogue (non-static):
 mov key@GOTPCREL(%rip), %r11
 xor %r11, (%rsp) // en/decrypt
 xor %r11, %r11 // %r11 = 0
prologue/epilogue (static):
 push %rbp
 mov key@GOTPCREL(%rip), %rbp
 xor %rbp, 8(%rsp) // en/decrypt
 pop %rbp

Wrap externally
accessible functions
in re-randomizable
modules,
continuously re-
randomize stacks

Evaluation

Evaluation

NVMe
microbenchmark

Evaluation

mySQL

25 50 75 100
Concurrency

1000

1500

2000

2500

Tr
an

sa
ct

io
ns

 /
s

25 50 75 100
Concurrency

10

20

30

C
P

U
 U

sa
ge

 (%
)

Linux 5 ms 1 ms

Evaluation

0

20

40

60

80

100

120
Th

ro
ug

hp
ut

 (M
B

/s
)

1kb and 8kb

Linux 20 ms 5 ms 1 ms

20 40 60 80 100
Concurrency

0

5

10

15

20

25

30

C
P

U
 U

sa
ge

 (%
)

0

20

40

60

80

100

120
512b and 4kb

20 40 60 80 100
Concurrency

0

5

10

15

20

25

30

1kb

1kb

8kb

8kb

512b

512b

4kb

4kb

Apache

Evaluation

Extreme
ioctl test

Thank you!

Hassan Nadeem
hnadeem@vt.edu

Virginia Tech

Ruslan Nikolaev
rnikola@psu.edu

The Pennsylvania State
University

Cathlyn Stone
stonecat@vt.edu

Virginia Tech

Binoy Ravindran
binoy@vt.edu
Virginia Tech

Adelie’s source code is available at: https://github.com/adelie-kaslr

https://github.com/adelie-kaslr

	Slide 1
	Security vulnerabilities in OSs continues to rise
	Attacks
	Contributions
	Goals
	Extending KASLR
	Slide 7
	Slide 8
	Continuous Module Re-Randomization
	Slide 10
	Continuous Module Re-Randomization
	Continuous Module Re-Randomization
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Evaluation
	Slide 18
	Thank you!

